Netter's

Concise

Atlas of
Orthopaedic

Anatomy

Jon C. Thompson, MD

Illustrated by

Frank HaNetter, MD

- COVER
- FRONTMATTER
- PREFACE
- ABOUT THE AUTHOR
- INTRODUCTION
- CHAPTER 1 - SPINE
- CHAPTER 2 - SHOULDER
- CHAPTER 3 - ARM
- CHAPTER 4 - FOREARM
- CHAPTER 5 - HAND
- CHAPTER 6 - PELVIS
- CHAPTER 7 - THIGH/HIP
- CHAPTER 8 - LEG/KNEE
- CHAPTER 9 - FOOT/ANKLE
- CHAPTER 10 - BASIC SCIENCE
- ABBREVIATIONS USED IN THIS BOOK

Netter's Concise Atlas of Orthopaedic Anatomy

Jon C. Thompson, M.D.

Dedication
To my parents, for their unwavering faith in me.
To my in-laws, for their continual support.
To my daughters, who make it meaningful and fun.
Especially to my wife Tiffany, who inspires me in every aspect of my life.

SAUNDERS ELSEVIER

Elsevier Inc.
1600 John F. Kennedy Boulevard
Suite 1800
Philadelphia, PA 19103-2899

Netter's Concise Atlas of Orthopaedic Anatomy

ISBN-13: 978-0-914168-94-2
ISBN-10: 0-914168-94-0
Published by Icon Learning Systems LLC, a subsidiary of Elsevier, Inc.

Copyright © 2002 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier's Health Sciences Rights Department in Philadelphia, PA,USA: phone: $(+1) 215239$ 3804, fax: (+1) 215239 3805, e-mail: healthpermissions@elsevier.com. You may also complete your request on-line via the Elsevier homepage (http://www.elsevier.com), by selecting 'Customer Support' and then 'Obtaining Permissions'.

NOTICE

Medicine is an ever-changing field. Standard safety precautions must be followed, but as new research and clinical experience broaden our knowledge, changes in treatment and drug therapy may become necessary or appropriate. Readers are advised to check the most current information provided by the manufacturer of each drug to be administered to verify the recommended dose, the method and duration of administration, and contraindications. It is the responsibility of the licensed health care provider, relying on experience and knowledge of the patient, to determine dosages and the best treatment for each individual patient. Neither the publisher nor the editor assumes any liability for any injury and/or damage to persons or property arising from this publication.

The Publisher

Library of Congress Catalog No: 00-130477

Printed in U.S.A.
Last digit is the print number: 987654

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier

PREFACE

While working on the Orthopedic Service as a medical student I found myself in need of a quick, but comprehensive reference to help me get through my busy clinics and morning rounds.
Having had success with pocket references, I searched the bookstores for something similar for orthopedics. Several were available, but none of them had the quick and easy-to-read format I wanted. As a result, I made pocket-sized note cards for my own use.

These cards started with basic anatomy such as diagrams of the Brachial plexus or fascial compartments of the leg. I then added cards for various conditions including notes on pertinent History and Physical Exam findings and treatment options. Many years later, when the growing stack of note cards was too big, unwieldy and tattered to use any longer, I converted the information into a more usable book format. That original hand-assembled book is the foundation of the atlas you are now holding.

> One nell-draun anatomic picture often explains far more than several pages of detailed text.

This concise, quick-reference atlas covers the spine and extremities as well as diagnosis and treatment of orthopedic conditions with primary emphasis on illustrations that educate, oftentimes without the need for explanatory text. Text, when necessary, is presented in tabular form to allow for fast review of essential information.

The first nine chapters are divided anatomically. Because I believe quite strongly that the treatment of orthopedic problems is based in anatomy, I have incorporated an extensive review of the anatomy of both the spine and extremities. There are also subsections within each chapter to help in the clinical diagnosis and treatment of the orthopedic patient. For example, the History table offers help in developing a differential diagnosis while the Trauma and Disorder tables assist in the work-up and treatment options of many orthopedic conditions. Chapter Ten is a brief introduction to orthopedic-related basic science.

From the first time I opened Frank Netter's Atlas of Human Anatomy, I was impressed, and even inspired, by the clarity and the incredible amount of information contained within each of his illustrations. I consider his work incomparable. As the basis for this text is also deeply rooted in its extensive use of illustrations, you can imagine how pleased I was when Icon Learning Systems asked me to combine our efforts to create this new publication. I thank them for their diligence, expertise, and patience with this project. I would also like to thank Dr. Jim Heckman for lending his wisdom and years of publishing experience to this effort.

This book is the result of several years of accumulating and condensing Orthopedic-related data. Indeed, as it stands now, this is truly the reference I had searched for as a medical student, but was never able to find. The information inside these covers served to help me synthesize and retain a large body of information when I was a student and young physician. I trust its readers will be as equally well served.

Jon C. Thompson, MD

[^0]
ABOUT THEAUTHOR

Jon Thompson, MD, received his medical degree from the Uniformed Services University of the Health Sciences in Bethesda, Maryland. He received his undergraduate degree from Dartmouth College. Dr. Thompson has worked as both an emergency room physician and a research assistant in the Extremity Trauma Branch of the Institute of Surgical Research. Currently, he is a resident in orthopedic surgery in the San Antonio Uniformed Services Health Education Consortium at Brooke Army Medical Center and is a corresponding member of the Department of Surgery at the Uniformed Services University of the Health Sciences.

[^1]
Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

INIRODUCTION

Netter's Concise Atlas of Orthopedic Anatomy is an easy-to-use reference and compact atlas of orthopedic anatomy for students and clinicians. Using images from both the Atlas of Human Anatomy and the 13 -Volume Netter Collection of Medical Illustrations, this book brings together over 450 Netter images together for the first time in one book.

Tables are used to highlight the Netter images and offer key information on bones, joints, muscles and nerves, and surgical approaches. Clinical material is presented in a clear and straightforward manner with emphasis on trauma, minor procedures, history and physical exam, and disorders.

Users will appreciate the unique color-coding system that makes information look-up even easier. Key material is highlighted in black, red, and green to provide quick access to clinically relevant information.

BLACK for standard text
RED highlights key information that if missed could result in morbidity or mortality
GREEN highlights "must know" clinical information.

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

CHAPTER 1 - SPINE

- TOPOGRAPHIC ANATOMY
- OSTEOLOGY
- TRAUMA
- SPINAL CORD TRAUMA
- JOINTS
- LIGAMENTS
- HISTORY
- PHYSICAL EXAM
- MUSCLES: ANTERIOR NECK
- MUSCLES: POSTERIOR NECK
- SUPERFICIAL MUSCLES: POSTERIOR NECK AND BACK
- DEEP MUSCLES: POSTERIOR NECK AND BACK
- NERVES OF THE UPPER EXTREMITY: CERVICAL PLEXUS
- NERVES: BRACHIAL PLEXUS
- NERVES: LUMBAR PLEXUS
- NERVES: SACRAL PLEXUS
- ARTERIES
- DISORDERS
- PEDIATRIC DISORDERS
- SURGICAL APPROACHES

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier
CHAPTER 1 - SPINE
TOPOGRAPHIC ANATOMY

OSTEOLOGY

CHARACTERISTICS	OSSIFY	FUSE	COMMENT

- Ring shaped
- Two lateral masses with facets on them
- No body, no spinous process
- Post. Arch has a sulcus/groove

Anterior arch (1)			
Posterior arch (2)	6 yrs		
(1 for each			
half)		\quad Birth	
:---			

Superior facet articulates with

- occiput, anterior arch articulates with dens
- Fractures: most have 2 sites
- Vertebral artery runs in groove on posterior arch

C2AXIS

Dens/odontoid

- articulates w/atlas at median atlantoaxial joint

Lower
body (2) Body
Dens (2) Tip
Arch (2)

6yrs
Birth
12 yrs
Birth

Odontoid has precarious vascular

- supply watershed area): increased incidence of nonunion with fractures
- Rotation in neck mostly occurs between C1 and C2

CERVICAL (C3-7)

- Foramina in
transverse process
Facets: "semi-
- coronal" allow
flex/extension, no rotation
- Narrow intervertebral foramina
- Bifid spinous processes
- Vertebral artery runs through transverse foramina
- Nerve roots at risk of compression
- No foramina in transverse process of C 7
- C7 is vertebral prominens, nonbifid spinous process
Klippel-Feil syndrome: congenital fusion of cervical vertebrae
- Facets: form semicircle: allow rotation
costal tacets (tor ribs)

T1-9: on the transverse process
T10-12: on the pedicle

Primary $8 \mathrm{wk} \quad 1-2 \mathrm{yr}$
Arch Body (fetal) $7-1$
yr Secondary 1114 yr 25 yr
prominent as that of C7

- Rotation of spine occurs within the thoracic region
- Spinous processes overlap the next lower vertebrae

Auis (C2): posterosuperior view

peuicies

- Mamillary and accessory processes

Facets: sagittal: good for

- flexion/extension, not rotation
- No costal facets

verievide Large vertebral bodies
- capable of bearing weight
- L5 has a ligamentous attachment to the ilium

SACRAL

- 5 vertebrae are fused
- 4 pairs of sacral foramina
- Sacral canal opens to hiatus

		$2-8$ Body
8 wk (fetal)	yrs	
Arches Cpstal		yrs elements Secondary
	$11-14$	
	yrs	$2-8$ yrs 20 Srs

- Transmits weight of body to the pelvis
- Nerves exit through the sacral foraminae
- Segments fuse to each other at puberty

COCCYGEAL

- 4 vertebrae are fused

Lacks most of the

- features of typical vertebrae

Primary Arch	$7-8$ wk (fetal)	$1-2$ yrs
Body	$7-10$ yrs	

Is attached to Gluteus

- maximus and
coccygeal muscle

Ossification: Typically 3 primary (body each arch), 5 secondary ossification centers (spinous process, transverse process (2), upper and lower plates of the body (2))

The arches fuse dorsally; spina bifida occurs when it does not fuse
The arches unite with the bodies (6-10years old) in order: thoracic, cervical, lumbar, sacral (7 years). Neurocentral joint (fusion of arch and body) is in the body

- Cancellous bone in cortical shell

- Vertebral canal between body and lamina: houses the spinal cord.
- Spinal Curves:

Cervical: lordosis
Thoracic: kyphosis (increase in Scheuermann's
disease)
Lumbar: lordosis

Vertebrae:

1. Body (centrum): have articular cartilage on superior/inferior aspects; get larger inferiorly
2. Arch (pedicles lamina) [no arch develops in spina bifida]
3. Processes: spinous, transverse, costal, mamillary
4. Foramina: vertebral, intervertebral, transverse

- 3 Columns

Anterior	ALL, anterior half of body annulus
Middle	PLL, posterior half of body annulus
Posterior	Ligamentum flavum, lamina, pedicles, facets
LEVEL	CORRESPONDING STRUCTURE
C2-3	Mandible
C3	Hyoid cartilage
C4-5	Thyroid cartilage
C6	Cricoid cartilage
C7	Vertebral prominens
T3	Spine of scapula
T7	Xiphoid, tip of scapula
T10	Umbilicus
L1	End of spinal cord
L3	Aorta bifurcation
L4	lliac crest

Left lateral view

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

TRAUMA

DESCRIPTION EVALUATION CLASSIFICATION TREATMENT

CERVICAL FRACTURE

High energy injury:

- Young - MVA, old - fall

Axial compression

- (most common mech.-anism) results in burst fracture

HX: Trauma.
Pain, worse with movement, +/numbness weakness.
PE: Tender to palpation, +/"step off' neurologic or

Based on level location:

C1-Jefferson fracture: both arches fractured C1-Lateral mass fracture C2Hangman's (isthmus):

Immobilize all fractures, traction on unstable, lower c -spine fractures C1 and 2:

Stable: Collar or halo

Unstable: Halo for 3 months

Flexion/distraction

- injury results in dislocation

Neurologic injury

- rare (esp. with C12 fracture) seen
Often have
- associated injuries
- 9 criteria checklist predicts instability
myelopathic signs. Do rectal genital exams.
XR: AP, lateral, odontoid: note anterior soft tissue

CT: Shows canal (fragments may compress canal)
MR: Evaluate soft tissues

Levine classification

C2-

Odontoid:

Type 1,2,3
C3-7
Fracture
Spinous process
(Clay shoveler's fracture): C6, 7, T1 (C7 most common)
and/or fusion
Odontoid type 2: ORIF (worse with traction)

C3-7:
Stable: Collar or halo

Unstable: Fusion

Spinous process:
Symptomatic

COMPLICATIONS: Neurologic injury (e.g., CN VIII with C1 fracture, etc.); Residual pain; Osteoarthritis; Nonunion (especially odontoid type 2 fracture)

Three-column concept. If more than one column involved in fracture, then instability of spine usually results

Lateral view. Note that lateral facet (zygapophyseal) joints in posterior column, with intervertebral foramina in middle column

Burst fracture of vertebral body involving both
anterior and middle columns resulted in instability and spinal cord compression

Three-Column Concept of Spinal Stability

HX: Trauma.
Pain, +/-

- Mechanism: MVA, - fall
- 1 column fracture: stable
- 2 column fracture: unstable

Anterior column (Wedge) fracture

- 50% heiaht loss is
numbness
weakness
PE: Tender
to palpation,
+/- "step off"
neurologic or myelopathic signs. Do rectal genital

Mechanism:
Compression/wedge:
anterior column
Burst: fragments displace posteriorly; anterior middle columns (unstable)

Stable fractures: bed rest, orthosis (TLSO) Unstable (or with
consurn
considered 2 columns

Compression/wedge

- fracture: (most common)
- Chance fracture
rare
Neurologic deficits
- rare, but seen with Burst fractures
exams
XR: AP, lateral T-L spine: body height, splaying pedicle

CT: Shows
any canal impingement

MR:
Evaluate soft tissues

Flexion/distraction

 (Chance/seatbelt fracture): 2 (or 3) columns: posterior middle (anterior).Fracture/dislocation: all 3 columns involved.
neurologic symptoms/compressed canal): Spinal canal decompression and spinal fusion

COMPLICATIONS: Neurologic injury; Osteoarthritis; Associated injuries.

Fracture/Dislocation: All 3 columns moved

Stable Fracture

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Cervical Spine Injury. Incomplete Spinal Syndromes

Complete: no
motor or

motor or sensory function below injury level.	Complete cord injury: cord	
severed, no		
Anterior: LEUE	function (spinal paralysis, pain temperature	shock must be resolved to
sensory loss,	diagnose it)	associated
vibratory	injuries:	
proprioception	lifothreatening	
intact.	Anterior:	first.

- Young males most common
Complete cord injury: no function AND
- bulbocavernosus reflex has returned. (spinal shock over)
- Incomplete cord injury: 4 types
Anterior cord: \#2.
- Flexion injury; worst prognosis
Central cord: most common. Hyperextension
- injury, seen in elderly (who fall), associated with spondylosis
Posterior: very
- rare (may not exist)
Brown-Sequard:
- rare, best prognosis

> HX: Trauma. Symptoms depend on injury/lesion. PE: Depends on injury

COMP: Neurogenic shock; Autonomic dysreflexia (requires urinary catheterization and/or fecal disimpaction); Neurologic sequelae

Spinal Shock: Physiologic cord injury/dysfunction (often from compression or swelling) including paralysis areflexia. Return of bulbocavernosus reflex (arc reflexes) marks the end of spinal shock.

Neurogenic Shock: Hypotension with bradycardia. Cord injury results in decreased sympathetic release (unopposed vagal tone)

Posterior column syndrome (uncommon)
Position sense lost below lesion motor
\triangle function and pain sensation preserved

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed

JOINTS

LIGAMENT	ATTACHMENT	COMMENT
ATLANTOOCCIPITAL (Ellipsoid)		
Primarily involved in flexion, extension, lateral bending movements		
Tectoral membrane Anterior/Posterior capsule	Axis body to occiput around facets	Extension of the PLL Joint stabilized by attachment to dens; known to be weak in Down's Syndrome
MEDIAN ATLANTOAXIAL C1-2 (Plane and Pivot)		
Primarily involved in rotation; dependent on ligaments for stability; instability in Down's syndrome		
Transverse Apical Alar Superior Longitudinal Inferior Longitudinal	Lateral mass-dens-lateral mass Dens to occiput Dens to occiput condyles Dens to basilar occiput Dens to axis body	Strongest ligament: holds dens in place Part of cruciate ligament Prevent excessive head rotation With transverse apical forms cruciate ligament

LIGAMENT	ATTACHMENT	COMMENT
ZYGAPOPHYSEAL (Facet Plane)		
Has articular discs: this joint allows the most mobility in the spine		
Capsule	Around facets	Changes orientation at different vertebral levels Orientation dictates plane of motion; C5-6 most mobile (\#1 degeneration site) L4-5 most flexion
INTERVERTEBRAL		
Intervertebral disc ALL PLL	Inferior superior aspect of bodies Anterior: body to body Posterior: body to body	Strongest attachments of bodies Thicker than PLL Thinner, disc herniation usually posterolateral.
COSTOVERTEBRAL (Luschka)		
Capsule Intraarticular Radiate	Surrounds rib head joint Head of rib to disc Anterior head to both bodies	Holds head to vertebrae Reinforces joint anteriorly

LIGAMENTS

LIGAMENT	LOCATION	COMMENT
Anterior Longitudinal [ALL]	Anterior surface of vertebral bodies Posterior surface of	
Posterior Longitudinal [PLL]	bodies (connects discs] Between transverse processes	Strong; thicker in center of body Weaker thinner [herniation occurs laterally or posterolaterally]
Intertransverse	Around facet joint	Weak, adds little support
Apophyseal joint capsule	Connects anterior surfaces of laminae	Weak, adds little support
Ligamentum Flavum	C7 to occipital protuberance	Strong; constantly in tension Extension of supraspinous ligament
Ligamentum Nuchae	Along dorsal spinous processes to C7	Unknown contribution to stability Unknown contribution to stability
Supraspinous	Between spinous processes	Extension of PLL
Interspinous Tectoral	Posterior aspect of bodies dens to clivus	Part of cruciate ligament, major stabilizer
membrane Transverse ligament	Lateral mass to dens to lateral mass	Resists excessive rotation Avulsion fracture can occur in trauma
Alar	Dens to occiput tubercles	
lliolumbar	L5 transverse process to ilium	

INTERVERTEBRAL DISCS [made of fibrocartilage]

Annulus	Outside, type I collagen, connects to vertebral hyaline cartilage, buffers
fibrosis	compression

Interverebtral dise

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

HISTORY

Head-on collision with stationary object or oncoming vehicle may, if seat belts not used, drive forehead against windshield. This sharply hyperextends neck, resulting in dislocation with or without fracture of cervical vertebrae

QUESTION	ANSWER	CLINICAL APPLICATION

PHYSICAL EXAM

EXAM		TECHNIQUE	CLINICAL APPLICATION
	INSPECTION		
Gait		Leaning forward Wide-based	Spinal stenosis Myelopathy
Alignment		Malalignment	Dislocation, scoliosis, lordosis, kyphosis
Posture		Head tilted Pelvis tilted	Dislocation, spasm, spondylosis, torticollis Loss of lordosis: spasm
Skin		Disrobe patient	Cafe-au-lait spots, growths: possibly neurofibromatosis Port wine spots, soft masses: possibly spina bifida
PALPATION			
Bony structures		Spinous processes	Focal/point tenderness: fracture. Step-off: dislocation/spondylolisthesis
Soft tissues		Cervical facet joints Coccyx-via rectal exam Paraspinal muscles Supraclavicular fossa Skin	Tenderness: osteoarthritis, dislocation Tenderness: fracture or contusion Diffuse tenderness indicates sprain/muscle strain. Trigger point: spasm Swelling suggests clavicle fracture Fatty masses: possibly spina bifida
RANGE OF MOTION			
Flexion/extension:	Cervical Lumbar	Chin to chest/occiput back Touch toes with straight legs	Normal: Flexion: chin within $3-4 \mathrm{~cm}$ of chest; Extension 70 degrees Normal: 45-60 degrees in flexion, 20-30 degrees in extension
Lateral flexion:	Cervical Lumbar	Ear to shoulder Bend to each side	Normal: 30-40 degrees in each direction Normal: 10-20 degrees in each direction

Cervical shoulders: rotate Lumbar Stabilize hip: rotate

Normal: 75 degrees each direction Normal: 5-15 degrees in each direction

NEUROVASCULAR

A complete neurologic examination should be performed

Sensory

CERVICAL

Supraclavicular (C2-3) Axillary nerve (C5)
Musculocutaneous nerve (C6)
Radial Nerve (C6)
Median Nerve (C7)
Ulnar Nerve (C8)
Medial Cutaneous nerve forearm(T1)

Anterior neck
clavicle area
Lateral shoulder Deficit indicates corresponding nerve/root lesion
Lateral forearm Deficit indicates corresponding nerve/root lesion Dorsal thumb web Deficit indicates corresponding nerve/root lesion space Deficit indicates corresponding nerve/root lesion
Radial border mid Deficit indicates corresponding nerve/root lesion finger Deficit indicates corresponding nerve/root lesion Ulnar border small Deficit indicates corresponding nerve/root lesion finger
Medial forearm

Extend knee, hip relaxed

Straight Leg Test

EXAM	TECHNIQUE	CLINICAL APPLICATION
LUMBAR		
Femoral/Saphenous nerve (L4) Superficial/Deep Peroneal Nerve (L5) Tibial/sural nerve (S1) Sacral nerves (S 2, 3, 4)	Medial leg ankle Dorsal foot 1 st-2 nd toe web space Lateral foot Perianal sensation	Deficit indicates corresponding nerve/root lesion
Motor		
CERVICAL		
Spinal accessory (CN11) Axillary nerve (C5) Musculocutaneous nerve (C5-6) Radial nerve (PIN) (C7) Median nerve (C8) Ulnar nerve (Deep branch) (T1)	Neck flexion rotation Resisted shoulder abduction Resisted elbow flexion Finger extension Thumb flexion, opposition, abduction Finger cross (abduct/adduct)	Weakness = Sternocleidomastoid or nerve/root lesion Weakness = Deltoid or nerve/root lesion Weakness = Brachialis or nerve/root lesion Weakness = EDC, EIP, EDM or nerve/root lesion Weakness = FPL/thenar muscles or corresponding nerve/root lesion Weakness $=$ DIONIO or nerve/root lesion

LUMBAR

Deep Peroneal nerve (L4)
Deep Peroneal nerve (L5)

Foot inversion dorsiflexion Great toe extension Foot eversion

Weakness = Tibialis anterior or nerve/root lesion
Weakness = Extensor hallucis longus or nerve/root lesion
Weakness = Peroneus longus/brevis or
(S1)
Tibial nerve (S1)

Reflexes

UMN
Pulses
Upper extremity Lower extremity

nerve/root lesion Weakness $=$ Flexor hallucis longus or nerve/root lesion

Hypoactive/absence indicates C5 radiculopathy Hypoactive/absence indicates C6 radiculopathy Hypoactive/absence indicates C7 radiculopathy Hypoactive/absence indicates L4 radiculopathy Hypoactive/absence indicates S1 radiculopathy Finger in rectum, squeeze/pull penis (Foley), anal sphincter contracts
Upgoing toe is consistent with upper motor neuron lesion

Diminished/absent = vascular injury or compromise
Diminished/absent = vascular injury or compromise

Forward Bending Test

Forward Bending Test
EXAM TECHNIQUE \quad CLINICAL APPLICATION

CERVICAL

Spurling	Axial load, then laterally flex rotate neck	Radiating pain indicates nerve root compression
Distraction	Upward distracting force	Relief of symptoms indicates foraminal compression of nerve root
LUMBAR		
Straight leg	Flex hip to pain, dorsiflex foot	Symptoms reproduced (pain below knee) indicative of radicular etiology
Straight leg $90 / 90$	Supine: flex hip knee 90°, extend knee	20° of flexion = tight hamstrings: source of pain
Rnwatrinn	Raise leg, flex knee,	Radicular pain with popliteal pressure indicates sciatic

uvvrou'n'	apply popliteal pressure	nerve etiology
Sitting root (flip sign)	Sit: distract patient, passively extend knee	Patient with sciatic pain will arch or flip backward on knee extension
Kernig	Supine: flex neck	Pain in or radiating to legs indicates meningeal irritation or infection
Brudzinski	Supine: flex neck, flex hip	Pain reduction with knee flexion indicates meningeal irritation.
Forward Bending	Standing, bend at waist	Asymmetry of back (scapula/ribs) is indicative of scoliosis
Trendelenburg	Stand on one leg	Drooping pelvis on elevated leg side: gluteus medius weakness
Hoover	Supine: hands under heels, patient then raises one leg	Pressure should be felt under opposite heel (not being raised). No pressure indicates lack of effort, not true weakness
Waddell signs	Presence indicates non-organic pathology: 1) exaggerated response or overreaction, 2) pain to light touch, 3) non-anatomic pain localization, 4) negative flip sign with positive straight leg test.	

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright@2001 Saunders, An Imprint of Elsevier

MUSCLES: ANTERIOR NECK

MUSCLE	ORIGIN								INSERTION	ACTION	NERVE
	ANTERIOR NECK										
Flatysma	Fascia: Deltoid/pectoralis major	Mandible; skin	Depress jaw	CN 7							

SUPRAHYOID MUSCLES					
	Anterior: Mandible Posterior: Mastoid notch	Hyoid body	Elevate hyoid, depress mandible	Anterior: Mylohyoid (CN 5) Posterior: Facial (CN 7)	
Digastric	Mandible	Raphe on hyoid	Same as above	Mylohyoid (CN 5)	
Mylohyoid	Styloid process	Body of hyoid	Elevate hyoid	Facial nerve (CN 7)	
Stylohyoid	Genial tubercle of mandible	Body of hyoid	Elevate hyoid	C1 Via CN 12	
Geniohyoid					

INFRAHYOID MUSCLES [STRAP MUSCLES INCLUDES THE SCM]
SUPERFICIAL

Sternohyoid	Manubrium clavicle	Body of hyoid	Depress hyoid	Ansa cervicalis (C1-3)
Omohyoid	Suprascapular notch	Body of hyoid	Depress hyoid	Ansa cervicalis (C1-3)
DEEP				
Thyrohyoid	Thyroid cartilage	Greater horn of hyoid	Depress/retract hyoid/larynx	C1 via CN 12
Sternothyroid	Manubrium	Thyroid cartilage	Depress/retract hyoid/larynx	Ansa cervicalis (C1-3)
Sternocleidomastoid	Manubrium clavicle	Mastoid process	Turn head opposite side	CN 11

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier
MUSCLES: POSTERIOR NECK

\left.| MUSCLE | ORIGIN | INSERTION | ACTION | NERVE |
| :--- | :--- | :--- | :--- | :--- |
| | POSTERIOR NECK: SUBOCCIPITAL TRIANGLE | | | |$\right]$

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier

SUPERFICIAL MUSCLES: POSTERIOR NECK AND BACK

MUSCLE	ORIGIN		INSERTION	ACTION

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier

DEEP MUSCLES: POSTERIOR NECK AND BACK

| MUSCLE | ORIGIN | INSERTION | ACTION |
| :---: | :---: | :---: | :---: | NERVE | DEEP (INTRINSIC) |
| :--- |

Splenius capitis	Ligamentum nuchae	Mastoid nuchal line	Both: laterally flex rotate neck to same side	Dorsal rami of inferior cervical nerves
Splenius cervicus	Spinous process T1-6	Transverse process C1-4		
INTERMEDIATE LAYER: SACROSPINALIS GROUP (Erector spinae) All have 3 parts: thoracis, cervicis and capitis				
lliocostalis Longissimus Spinalis	Common origin: Sacrum, iliac crest, and lumbar spinous process.	Ribs TC spinous process, mastoid process T-spine: spinous process	Laterally flex, extend, rotate head (to same side) and vertebral column	Dorsal rami of spinal nerves

MUSCLE	ORIGIN	INSERTION	ACTION	NERVE
DEEP (INTRINSIC)				
DEEP LAYERS: TRANSVERSOSPINALIS GROUP				
Semispinalis (CT)	Transverse process	Spinous process	Extend, rotate opposite side	Dorsal primary rami
Semispinalis capitis	Transverse process T1-6	Nuchal ridge		Dorsal primary rami
Multifidi [C2-S4]	Transverse process	Spinous process	Flex laterally, rotate opposite	Dorsal primary rami
Rotatores	Transverse process	Spinous process +1	Rotate superior vertebrae opposite	Dorsal primary rami
Interspinales	Spinous process	Spinous process +1	Extend column	Dorsal primary rami
Intertransversarii	Transverse process	Transverse process +1	Laterally flex column	Dorsal primary rami

CERVICAL PLEXUS (C1-C4 ventral rami) Behind IJ and SCM

Lesser Occipital Nerve(C2-3): arises from posterior border of SCM
Sensory: Superior region behind auricle
Motor: NONE

Great Auricular Nerve (C2-3): exits inferior to Lesser Occipital nerve,
then ascends on SCM
Sensory: Over parotid gland and below ear
Motor: NONE

Transverse Cervical Nerve (C2-3): exits inferior to Greater Auricular nerve, then to anterior neck
Sensory: Anterior triangle of the neck
Motor: NONE

Supraclavicular (C2-3): splits into 3 branches: anterior, middle, posterior
Sensory: Over clavicle, outer trapezius deltoid
Motor: NONE
1.

Ansa Cervicalis (C1-3): superior (C1-2) inferior
2. (C2-3) roots form loop

Sensory: NONE
4.

Phrenic Nerve (C3-5): On anterior scalene, into thorax between subclavian artery and vein
6. Sensory: Pericardium and mediastinal pleura

Motor: Diaphragm

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com
1.
2.
3.
4.
5.
6.
7.
8.
9.
11.
16.

Motor:

Lower Subscapular (C5-6)
Sensory: NONE
Subscapularis [lower portion] Teres major

Thoracodorsal (C7-8): runs with Thoracodorsal artery
Sensory: NONE
Motor: Latissimus dorsi spac
Sace Lat upper arm: vuperior laterat cuna

Motor: Deltoid (Deep branch)
Teres minor (Superficial branch)

Radial (C5-T1): runs with Deep Artery of Arm in T Lateral arm: via Inferior lateral cutaneo Posterior arm: via Posterior cutaneous
Sensory: Posterior forearm: via Posterior cutane Dorsal $31 / 2$ digits and hand: via super branches)

POSTERIOR COMPARTMENT OF A
Triceps [medial, long, lateral heads] Anaconeus
MOBILE WAD: (Radial nerve-Deep br Brachioradialis [BR]
Extensor carpi radialis longus [ECRL
Extensor carpi radialis brevis [ECRB]
POSTERIOR COMPARTMENT OF FC
PIN Multiple possible compression si (see Forearm)
Superficial Extensors
Extensor carpi ulnaris [ECU]
Extensor digiti minimi [EDM]
Extensor digitorum [ED]
Deep Extensors
12.
13.

Abductor pollicis longus
Extensor pollicis longus
Extensor pollicis brevis
Extensor indicis proprius
14.

Copyright © 2008 Elsevier Inc. All rights reserved. -

NERVES: LUMBAR PLEXUS

LUMBAR PLEXUS (Deep to Psoas muscle)

ANTERIOR DIVISION

Subcostal (T12):

Sensory: Subxiphoid region
Motor: NONE
lliohypogastric (L1):
Sensory: Above pubis
Motor: Transversus abdominus
Internal Oblique
llioinguinal (L1):
Sensory: Inguinal region
Motor: NONE

Genitofemoral (L1-2): pierces Psoas, lies on anteromedial surface.

Sensory: Scrotum/mons
Motor: Cremaster

Obturator (L2-4): exits via obturator canal, splits into anterior posterior divisions. Can be injured by retractors placed behind the transverse acetabular ligament.

Inferomedial thigh via cutaneous
Sensory:
branch of Obturator nerve
External oblique
Adductor longus (anterior division)

Adductor brevis (ant post division) Adductor magnus (posterior division) Gracilis (anterior division) Obturator externus (posterior division)

Accessory Obturator (L2-4): inconsistent Sensory: NONE

Motor: Psoas

POSTERIOR DIVISION
2.

Lateral Femoral Cutaneous
[LFCN](L2-3): crosses ASIS, can be compressed at ASIS
3.
4.
5.
6.
7.

Sensory: Lateral thigh
Motor: NONE

(L2-4): lies between psoas major and iliacus

Anteromedial thigh via anterior intermediate cutaneous nerves
Sensory: Medial leg foot via medial cutaneous nerves (Saphenous Nerve)
Psoas
lliacus Pecineus Quadriceps Rectus femoris Vastus
Motor: lateralis Vastus intermedialis Vastus Medialis Sartorius Articularis genu

Copyright © 2008 Elsevier Inc. All rights reserved. www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier

NERVES: SACRAL PLEXUS

SACRAL PLEXUS

ANTERIOR DIVISION

Tibial (L4-S3): descends between heads of Gastrocnemius to medial malleolus
Posterolateral proximal calf: via Medial sural
Posterolateral distal calf: via Sural
Sensory: Medial plantar heel: via Medial calcaneal
Medial plantar foot: via Medial plantar
Lateral plantar foot: via Lateral plantar
POSTERIOR THIGH
Biceps femoris [long head]
Semitendinosus
Semimembranosus
SUPERFICIAL POST. COMPARTMENT OF LEG
Soleus: via nerve to Soleus
Gastrocnemius
Plantaris
DEEP POSTERIOR COMPARTMENT OF LEG
Popliteus: via nerve to Popliteus
Tibialis posterior [TP] (Tom)
Flexor digitorum longus [FDL] (Dick)
Flexor hallucis longus [FHL] (Harry)
Motor: FIRST PLANTAR LAYER of FOOT
Abductor hallucis: Medial plantar
Flexor digitorum brevis [FDB]: Medial plantar
Abductor digiti minimi: Lateral plantar
SECOND PLANTAR LAYER of FOOT
Quadratus plantae: Lateral plantar
Lumbricals: Medial lateral plantar
THIRD PLANTAR LAYER of FOOT
Flexor hallucis brevis [FHB]: Medial plantar
Adductor hallucis: Lateral plantar
Flexor digitorum minimus brevis [FDMB]:
Lateral plantar
FOURTH PLANTAR LAYER of FOOT
Dorsal interosseous: Lateral plantar
Plantar interosseous: Lateral plantar

Nerve to Quadratus femoris (L4-S1):
Sensory: NONE
Motor: Quadratus femoris
Inferior gemelli

Nerve to Obturator internus (L5-S2): exits greater sciatic foramen
Sensory: NONE
Motor: Obturator internus
Superior gemelli

Pudendal (S2-4): exit greater then re-enters lesser sciatic foramen
Perineum: via Perineal (scrotal/labial branches)
Sensory: via Inferior rectal nerve via Dorsal nerve to penis/clitoris
Bulbospongiosus: Perineal nerve Ischiocavernosus: Perineal nerve
Motor: Urethral sphincter: Perineal nerve Urogenital diaphragm: Perineal nerve Sphincter ani externus: Inferior rectal nerve

POSTERIOR DIVISION

Common Peroneal (L4-S2): in groove between biceps lateral head of Gastrocnemius. Wraps around fibular head, deep to peroneus longus; the divides

Proximal lateral leg: via Lateral sural nerve
Distal lateral leg dorsal foot: via Superficial peroneal
Sensory: Lateral foot: via Sural (lateral calcaneal dorsal cutaneous branches)
1st/2nd interdigital space: Deep peroneal

POSTERIOR THIGH

Biceps femoris [short head]
ANTERIOR COMPARTMENT of LEG:
Deep Peroneal
Tibialis anterior [TA]
Extensor hallucis longus [EHL]
Extensor digitorum longus [EDL]
Peroneus tertius
LATERAL COMPARTMENT of LEG:

Superficial Peroneal

Peroneus longus
Peroneus brevis
FOOT: Deep Peroneal
Extensor hallucis brevis [EHB]
Extensor digitorum brevis [EDB]

Superior Gluteal (L4-S1):
Sensory: NONE
Gluteus medius
Motor: Gluteus minimus Tensor fascia lata
3.

Inferior Gluteal (L5-S2):
Sensory: NONE
Motor: Gluteus maximus
4.

Nerve to piriformis (S2):
Sensory: NONE
Motor: Piriformis
5.

Posterior Femoral Cutaneous Nerve [PFCN] (S1-3)
6.
10. Sensory: Posterior thigh

Motor: NONE

Copyright © 2008 Elsevier Inc. All rights
reserved. - www.mdconsult.com

ARTERY	COURSE	BRANCHES	COMMENT
Vertebral	Major arterial supply of cervical spine and cord.		
	Off both subclavian through transverse foramen of C1-6	Anterior and posterior segmental medullary	Feed Anterior Posterior spinal arteries respectively
		Anterior spinal	Forms superiorly from both vertebrals
		Posterior spinal	Each branch superiorly from vertebrals
Ascending cervical	From Thyrocervical	Contributes to Anterior Posterior spinal arteries via segmental medullary arteries	
Deep cervical	From Costocervical	Contributes to Anterior Posterior spinal arteries via segmental medullary arteries	
Segmental/Intercostal	Branch from aorta	Dorsal branch Dorsal branch Spinal branch Ventral branch Major anterior segmental medullary (Adamkiewicz Artery)	Supplies dura, posterior elementsSupplies cord and bodies Supplies vertebral bodies Supplies inferior thoracic superior, L-spine, feeds anterior spinal artery in L-spine
Spinal branch	Along vertebral bodies	Anterior segmental medullary Posterior segmental medullary Radicular arteries (Anterior Posterior)	On ventral root; feeds anterior spinal artery Feeds posterior spinal arteries Along nerve roots, do not feed spinals
		Anterior segmental medullary On Posterior	On ventral root, feeds anterior

Lumbar arteries	Branch from aorta	segmental medullary Radicular arteries (Anterior Posterior)	spinal artery Feeds Posterior spinal arteries
Anterior segmental medullary	Along nerve roots	Anterior spinal artery Anterior radicular arteries	Single artery, runs midline Do not feed spinal arteries
Posterior segmental medullary	Along nerve roots	Posterior spinal artery Posterior radicular arteries	Paired arteries (left/right) Do not feed spinal arteries
Anterior spinal	Midline anterior surface of cord	Supplies anterior $2 / 3$ of cord; has multiple contributions from segmental arteries	
		Sulcal branches Pial arterial plexus	Supplies center of cord Supplies cord peripheries
Posterior spinal	Off midline (LR)	Supplies post $1 / 3$ of cord; has multiple contributions from segmental arteries	

Each nerve root has either a segmental medullary or a radicular artery associated with it.

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

DISORDERS

Extensive thinning of cervical discs and hyperextension deformity with narrowing of intervertebral foramina. Lateral radiograph reveals similar changes

DESCRIPTION

| H P WORK- |
| :--- | :--- |
| UP/FINDINGS |

TREATMENT

CAUDA EQUINA SYNDROME

- Compression of cauda equina Etiology: usually
- a large midline disc herniation
- A surgical emergency

HxPE: Back, buttock, leg pain. Bladder (\#1) and bowel dysfunction. Leg numbness paralysis

XR: no emergent need MR (or myelography): to show compression

Immediate surgical decompression (when diagnosis is confirmed)

CERVICAL SPONDYLOSIS

Disc

- degeneration with vertebral and facet arthritis
3 pain sources:
- disc, ligament, root (HNP)
- C5-6 \#1 site

PLL ossifies, results in

- stenosis (most common in Asians)

XR: AP, lateral:

1. Osteophytes
2. Spinal stenosis
3. Disc space narrowed
4. Facet osteoarthritis
5. Instability

Discogenic: soft collar, NSAID,

1. Physical
therapy, +/traction
Persistent radiculopathy or myelopathy:
2. decompression and fusion (not for discogenic pain)

Not a sprain. Soft tissue (muscle/ligament) strain	Hx: Stiffness, pain (dull/nonradiating) in neck traps PE: Paraspinal	$X R$: if history of trauma or neurologic
Etiology: trauma - or some minor movement	muscles tender to palpation (+/spasm). Spurling test	or persistent symptoms

Soft collar

1. immobilization (Philadelphia collar)
2. NSAID, muscle relaxant
+/- lce, heat, massage

Aging process: disc desicates

- and tears. Facet degeneration and sclerosis
- Associated with tobacco use

Hx: Chronic LBP (+/buttock), stiffness XR: AP, lateral: (worse with activity) aging, osteophytes, PE: Back tender to disc space narrowed, palpation +/Waddell's signs.

1. NSAIDs (no narcotics)
2. Antidepressants if indicated Physical
3. therapy, exercise, weight control

HERNIATED CERVICAL DISC (Herniated nucleus pulposus)

Nucleus pulposus

- protrudes presses on root.

Usually

- posterolateral at C5-6 or C6-7.

Hx: Young or middle age. Numbness radiating pain. PE: 1weakness, decreased sensation reflexes, 1 Spurling test

1. Soft collar, rest

Physical
2. therapy, NSAIDs
3. Surgical decompression

Degenerative Disc Disease
 spur formation

DESCRIPTION HP WORK-UP/FINDINGS TREATMENT

HERNIATED LUMBAR DISC (HNP)
DDD annulus
tear: nucleus

- herniates, $+/-$ root or cauda compression.
- Can be

Asymptomatic

- L4-5 most common
Most
- posterolateral
(PLL weak)

Hx: DDD sx (+/radicular sx). Increased with sneeze, decreased with hip flexion PE: Root weakness, decreased sensation reflexes, 1 straight leg bowstring tests.

XR: AP, lateral: age changes EMG/NCS: + after 3 weeks MR: shows herniation

1. Bed rest

NSAIDs
Physical
2. therapy,
fitness
program
3. Discectomy

Cauda
Equina
4. Syndrome:
a surgical
emergency

| DESCRIPTION | $\begin{array}{c}\text { W P }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- |
| | LUMBAR BACK SPRAIN/MUSCLE STRAIN |
| UP/FINDINGS | |$]$

SCHEUERMANN'S DISEASE

SCOLIOSIS

Lateral spine

- curve (+/rotation)
Multiple $\quad \mathrm{Hx}+$ +-pain fatigue \quad Xull length AP,
- etiologies: \#1 idiopathic
- Girls.boys
(needing tx)
- Find on school screening
Progression:
based on skeletal maturity, curve angle

Hx: +/-pain, fatigue, visible physical deformity.
PE: Neurologic exam usually normal. 1 forward bend test. Determine plumb line (hang string from C7)
lateral: Lateral curve Curves: on AP.
Measure Cobb
angle: angle
between lines drawn perpendicular to most superior inferior affected vertebrae

1. 30° observation
2. $30-40^{\circ}$ bracing
3. 40° surgery: spinal fusion.

SPINAL STENOSIS

Congenital vs.

- acquired (most common)
- Canal narrowing
with symptoms
Etiology: DDD or
- facet
osteoarthritis ligament laxity

Hx: Neurogenic claudication (fatigue), +/-pain; Back extension reproduces sx . PE: Weakness, decreased pin prick reflexes	XR: AP, lateral: age changes CT/MR: better to evaluate canal, shows stenosis		sical
		1.	Therapy: abdominal strength back flexion exercises
		2	NSAIDs (+/steroids)
			Laminectomy

SPONDYLOLISTHESIS
Forward

- slipped vertebrae
- 6 Types
(common sites):
Congenital:

1. facet defect
(S1)
Isthmic (most common): pars

XR: AP, lateral: measure forward slippage for grade (I-V, 0-100 $)$ Type:

Scottie

1. dog: long

Activity

1. modification, rest, NSAIDs
2. Flexion exercises
3. detect (Lऽ-S1; associated with hyperextention); Degenerative:
4. facet
5)

PE: +/-palpable step-off spasm. +/-radicular signs (e.g. weakness, decreased sensation reflexes)
neck
Scottie

2. dog: broken neck

3. Facet arthritis
decompression and fusion for
4. progressive slippage or radicular symptoms

SPONDYLOLYSIS

Defect or stress

- fracture (without slippage) in pars interarticularis
- Leads to spondylolisthesis
- L5 most common site

Hx: Young, athlete (football, gymnast). Low XR: Oblique L-spine back pain, worse with "Scottie dog has a activity (\#1 cause in collar" pediatrics)
4. Traumatic
5. Pathologic
6. Post-surgical

1. Symptomatic treatment Activity
2. restriction, +/brace
3. Back muscle strengthening

TUMORS

Metastatic are most common. Most common primary: Multiple Myeloma (malignant)

Isthmic trpe spondylolisthesis. Anterioe luxation of 15 on sacrum due to fracture

PEDIATRIC DISORDERS

DESCRIPTION

EVALUATION
 MYELODYSPLASIA

TREATMENT/COMPLICATIONS

- Neural tube (closure) defect;

No function below level of lesion; level

- determines function (L1 paraplegic/S1 near normal)
- Associated with increased AFP
- Associated with many deformities
- Lateral spine curve
+/- rotation
- Multiple etiologies:
\#1 idiopathic
- Cases needing tx : girls boys

Curve progression predicted:

1. Angle of curve

Skeletal maturity
2. (Risser
stages:
iliac
Apophysis)

Hx : Some have family
history
PE/XR: Depends on type of defect:

1. Spina bifida occulta
2. Meningocele
3. Myelomeningocele
4. Rachischisis

SCOLIOSIS

Hx: +/- pain fatigue, visible deformity, found in school screening
PE: + forward bend test (asymmetric). Neurologic exam usually normal.
Determine plumb line from C7
XR: AP full length: measure Cobb angle. (See Disorder Table)

Must individualize for each patient: Most need ambulation assistance, orthoses, surgical releases, etc.Common problems requiring treatment: Deformities and/or contractures of spine, hips, knees, ankles, and feet

Based on curves and Risser stage;

1. 30° : observation (most)
$30-40^{\circ}$:bracing (Boston, for
2. apex below T8 vs. Milwaukee brace)
3. 40° : spinal fusion

TORTICOLLIS

- Contracture of

SCM

- Associated with other disorders
- Associated with

Hx: Parents note deformity PE: Head tilted to one side, chin to opposite side, 1/2facial asymmetry

1. Physical therapy/stretching of the sternocleidomastoid

Surgical release if persistent
2. Complication: poor eye

- Etiology: several
theories

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier

SURGICALAPPROACHES

Anterior Approach to Cervical Spine

Herniated

1. disc removal
2. Vertebral fusion
3. Osteophyte removal
4. Tumor or biopsy

Recurrent

1. laryngeal nerve
2. Sympathetic nerve

Carotid artery
4. Internal jugular
5. Vagus nerve Inferior
6. thyroid artery

- Access C3 to T1

Right recurrent laryngeal nerve more susceptible

- to injury-most choose approach on left side.
Thyroid arteries
- limit extension of the approach

Posterior Approach to Cervical Spine

USES	INTERNERVOUS PLANE	DANGERS	COMMENT
POSTERIORAPPROACH			

CERVICAL

1. Posterior fusion
2. Herniated disc

Left and Right paracervical muscles (posterior cervical rami)
3. Facet dislocation

LUMBAR

1. Herniated | disc | $\begin{array}{l}\text { Left and Right } \\ \text { paraspinal muscles }\end{array}$ | Segmental vessels | Incision is along the spinous |
| :--- | :--- | :--- | :--- | Explore
2. nerve
roots
3. Spinal cord
4. Nerve roots
5. Posterior rami
6. Vertebral artery
7. Segmental vessels
8. Most common c-spine approach
Mark the level of pathology with a
9. radiopaque marker preop to assist finding the appropriate level intraoperatively

CHAPTER 2 - SHOULDER

- TOPOGRAPHIC ANATOMY
- OSTEOLOGY
- TRAUMA
- JOINTS
- MINOR PROCEDURES
- HISTORY
- PHYSICAL EXAM
- MUSCLES: INSERTIONS AND ORIGINS
- MUSCLES: BACK/SCAPULAREGION
- MUSCLES: ROTATOR CUFF
- MUSCLES: DELTOID/PECTORAL REGION
- NERVES
- ARTERIES
- DISORDERS
- SURGICAL APPROACHES

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

CHAPTER 2 - SHOULDER

TOPOGRAPHIC ANATOMY

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

OStEOLOGY

\checkmark
severe)
Dx often delayed due to

- associated injuries (esp pulmonary great vessels).
 lateral/ scapular Y; CXR

CT: intraarticular glenoid
fracture through glenoid, exits superiorly

Type IV:
Transverse fracture exits through the scapula body

Type V: Types II + IV

COMPLICATIONS: Associated injuries: Rib fracture \#1, pneumothorax, pulmonary contusion, vascular injury, brachial plexus inury; AC injury (esp w/type III; acromion fx); Suprascapular nerve injury

Anterior: Abd/ER
injury 2
mechanisms $\quad \mathrm{HX}$: Trauma or TUBS [Traumatic

1. Unilateral,

Bankart lesion, Surgery]
-

AMBRI

[Atraumatic Multidirectional,
Bilat- eral,
2. responds
to Rehab, Inferior capsule
repair) 20
yo: 80\%
recur
Hill Sachs Bankart lesions predisposed to recurrence
Posterior: after

- seizure often missed
hx of shoulder slipping out. Intense pain. PE: Deformity, flattened shoulder silhouette. Exquisitely tender. Do full neurovascular PE
XR: AP/axillary lateral (also Stryker notch) Anterior: Hill Sacks Lesion Posterior: Rev Hill Sachs, "empty glenoid" MRI: Bankart lesion (anterior/inferior labral tear)

Reduce dislocation:
Pre and Post neurological exam Conscious sedation (IV benzo + narcotic)

Methods:

1. Traction/countertraction
2. Hippocratic
3. Stimson
4. Milch

Immobilize (2-6 weeks), rehabilitation Surgery for recurrent/TUBS, posterior dislocation 3 wks

COMPLICATIONS: Recurrence rate (young age predicts it, decreases w/increased age); Axillary nerve injury; Rotator cuff tear; Glenoid/Greater tuberosity fracture; Dead arm syndrome

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

JOINTS

JOINT	TYPE	LIGAMENTS	COMMENTS
Glenohumoral	Spheroidal Ball and Socket	Highly mobile, decreased stability (needs Rotator cuff); \#1 dislocated joint (anterior 90\%)	
		Capsule	Loose, redundant, with gaps; minimal support
		Coracohumoral	Provides anterior support
		Glenohumoral	Discrete capsular thickenings; 3 ligaments: superior, middle, inferiorstrongest
		Glenoid labrum	Increases surface area depth of glenoid. Injuries: SLAP lesion/Bankart lesion
		Transverse humeral	Holds biceps (LH) tendon in groove
Sternoclavicular	Double sliding	Capsule	
		Anterior and Posterior SC ligaments	Posterior stronger; Anterior dislocation more common
		Interclavicular	
		Costoclavicular	Strongest SC ligament
Acromioclavicular [AC joint]	Plane/Gliding	Capsule has a disc in joint;	
		Acromioclavicular	Horizontal stability; torn in Grade ॥ AC injury
		Coracoacromial	Can cause impingement
		Coracoclavicular	Vertical stability, torn in Grade IIIAC injury
		Trapezoid	Anterior/lateral position
		Conoid	Posterior/medial position; stronger
Scapulothoracic	not an articulation	Allows scapula to move along the posterior rib cage.	
harlianmonto		Superior	Separates Suprascapular Artery

STRUCTURE	FUNCTION				
	MUSCLES	$	$	ROTATOR CUFF	Holds humeral head in glenoid
:---	:---				
Supraspinatus Infraspinatus	Most commonly torn tendon				
Teres Minor					
Subscapularis	Anterior support				
LIGAMENTS					
Capsule	Rotator cuff tendons fused to it				
Glenohumeral	Superior: resists inferior translation				
	Middle: resists anterior translation				
Coracohumeral	Resists postinferior translation				
Labrum	Deepens glenoid				

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

STEPS

INJECTION OF THE ACROMIOCLAVICULAR (AC) JOINT

1. Ask patient about allergies
2. Palpate clavicle distally to $A C$ joint (sulcus)
3. Prepare skin over AC joint (iodine/antiseptic soap)
4. Anesthetize skin with local (quarter size spot)

Use 21 gauge or smaller, insert needle into joint vertically. Aspirate to ensure not
5. in a vessel, then inject 2 ml of $1: 1$ local/ corticosteroid preparation into $A C$ joint.
(You will feel the needle "pop/give" into the joint)
6. Dress injection site

NJECTION OF SUBACROMIAL SPACE

1. Ask patient about allergies
2. Palpate the acromion: define it's borders
3. Prepare skin over shoulder (iodine/antiseptic soap)
4. Anesthetize skin with local (quarter size spot)

Hold finger (sterile glove) on acromion, insert needle under posterior acromion w/cephalad tilt. Aspirate to ensure not in a vessel, then inject 5-10cc of
5. preparation-will flow easily if in joint). Use:
a. diagnostic injection: local only
b. therapeutic injection: local/corticosteroid 5:1
6. Dress injection site

GLENOHUMERALARTHROCENTESIS

1. Palpate the coracoid process/humeral head
2. Prepare skin over shoulder (iodine/antiseptic soap)
3. Anesthetize skin (quarter size spot)
4. Abduct arm/downward traction (by an assistant)
5. Insert needle between humeral head and coracoid process
6. Synovial fluid should aspirate easily
7. Dress insertion site

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Injury to acromioclavicular joint. Usually caused by fall on tip of shoulder, depressing acromion (shoulder separation)

QUESTION	ANSWER	CLINICAL APPLICATION
1. AGE	OLD YOUNG	Rotator cuff tear/impingement, arthritis (OA), adhesive capsulitis (frozen shoulder), humerus fracture (after trauma) Instability, AC injury, osteolysis, impingement in athletes
PAIN a. Onset b. Location c. Occurrence d. Exacerbating /relieving	Acute Chronic On top/AC joint Night pain Overhead worse Overhead better	Fracture, rotator cuff tear, acromioclavicular injury, dislocation Impingement, arthritis AC joint arthrosis Classic for Rotator Cuff tear, tumor Rotator Cuff tear Cervical radiculopathy
3. STIFFNESS	Yes	Osteoarthritis, adhesive capsulitis
4. INSTABILITY	"Slips in and out"	Dislocation: 90\% anterior - occurs with abduction external rotation (e.g. throwing motion)
5. TRAUMA	Direct blow Fall on outstretched hand	Acromioclavicular injury Glenohumeral dislocation
	Overhead usage	Osteolvsis (distal clavicle)

| 6. WORK/ACTIVITY | Weight lifting
 Athlete:
 throwing type
 Long term
 manual labor | Rotator cuff
 tear/impingement
 Arthritis (OA) |
| :--- | :--- | :--- | :--- |
| 7.Neurologic
 Symptoms | Numbness/tingling/
 "heavy" | Thoracic outlet syndrome, brachial
 plexus injury |
| 8. PMHx | Cardiopulmonary/GI | Referred pain to shoulder |

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier

PHYSICAL EXAM

EXAM	TECHNIQUE/FINDINGS	CLINICAL APPLICATION
INSPECTION		
Symmetry	Compare both sides	
Wasting	Loss of contour/muscle mass	Rotator Cuff tear
Gross deformity	Superior displacement	Acromioclavicular injury (separation)
Gross deformity	Anterior displacement	Anterior dislocation (glenohumeral joint)
Gross deformity	"Popeye" arm	Biceps tendon rupture (usually proximal end of long head)
PALPATION		
AC joint	Feel for end of clavicle	Pain indicates Acromioclavicular pathology
Subacromial bursa	Feel acromion-down to acromiohumeral sulcus	Pain: bursitis and/or supraspinatus tendon rupture
Coracoclavicular ligament	Feel between acromion coracoid	Pain indicates impingement
Greater tuberosity	Prominence on lateral humeral head	Pain indicates Rotator Cuff tendinitis
Biceps tendon	Feel proximal insertion on humerus	Pain indicates biceps tendinitis
RANGE OF MOTION		
Forward flexion	Arms from sides forward	0-160 ${ }^{\circ}$ normal
Abduction	Arms from sides outward	0-160/180 ${ }^{\circ}$ normal
Internal rotation	Reach thumb up back-note level	Mid thoracic normal-compare sides
External rotation	Elbow at side, 1. rotate forearms lateral 2. Abduct arm to 90°, externally rotate up	$30-60^{\circ}$ normal External rotation decreased in adhesive capsulitis
Rotator Cuff tear: AROM decreased, PROM ok, Adhesive Capulitis: both are decreased		
NEUROVASCULAR		
Sensory	Light touch, pin prick, 2 pt	
Supraclavicular nerve (C4)	Superior shoulder/ clavicular area	Deficit indicates corresponding nerve/root lesion
Axillary nerve (C5)	Lateral shoulder	Deficit indicates corresponding nerve/root lesion
T2 segmental nerve	Axilla	Deficit indicates corresponding nerve/root lesion
Motor		
Spinal accessory (CN11)	Resisted shoulder shrug	Weakness = Trapezius or corresponding nerve lesion.
Suprascapular(C5-6)	Resisted abduction	Weakness = Supraspinatus or corresponding nerve/root lesion.
	Resisted external rotation	Weakness = Infraspinatus or corresponding nerve/root lesion.
Axillary nerve (C5)	Resisted abduction	Weakness = Deltoid or corresponding nerve/root lesion.
	Resisted external rotation	Weakness = Teres minor or corresponding nerve/root lesion.
Dorsal scapular	Shouldor chrun	Weakness = Lev Scap/Rhomboid or

Active

Compression (O’Brien's)	$90^{\circ} \mathrm{FF}$, max \mathbb{R}, then adduct/flex	Pain or pop indicates a SLAPlesion
Load and shift	Push into glenoid, translate ant/post	Motion indicates instability in that direction (anterior vs. posterior)
Apprehension sign	Throwing position- continue to externally rotate	Apprehension indicates anterior instability
Relocation (Jobe)	90° abd, full ER , posterior force on humeral head	Relief of pain/apprehension, or increased externalrotation indicates anterior instability
Posterior Apprehension sign	FF 90°, internally rotate, posterior force	Apprehension indicates posterior instability
Inferior instability	Abd 90°, downward force on mid-humerus	Slippage of humeral head or apprehension: inferior instability or Multidirectional instability
Sulcus sign	Arm to side, downward traction	Increased acromiohumeral sulcus: inferior instability or Multidirectional instability
Adson	Palpate radial pulse, rotate neck to ipsilateral side	Reproduction of symptoms indicates thoracic outlet syndrome
Roo (EAST)	Bilateral arm: abduct/ER, open and close fist 3 minutes	Reproduction of symptoms indicates thoracic outlet syndrome
Spurling	Lateral flexaxial compression of neck	Reproduction of symptoms indicates cervical disc pathology

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

CORACOID PROCESS	GREATER TUBERCLE	ANTERIOR PROXIMAL	MEDIAL EPICONDYLE	LATERAL EPICONDYLE
ORIGINS	INSERTIONS	INSERTIONS	ORIGINS	ORIGINS
Biceps (SH)	Supraspinatus	Pectoralis major	Pronator Teres	Anaconeus
Corcobrachialis	Infraspinatus	Latissimus dorsi	Common Flexor	Common. Extensor
INSERTIONS	Teres minor	Teres major	$\begin{aligned} & \text { Tendon [FCR, } \\ & \text { PL, } \end{aligned}$	Tendon [ECRB,ED,
Pectoralis minor			FCU, FDS]	EDM, ECU]

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed

Copyright © 2001 Saunders, An Imprint of Elsevier

MUSCLES: BACK/SCAPULA REGION

MUSCLE	ORIGIN	INSERTION	NERVE	ACTION	COMMENT
Trapezius	C7-T12 spinous process	Clavicle, Acromion spine of scapula	Cranial nerve XI	Elevate rotate scapula	Connect UE to spine
Latissimus dorsi	T7-T12, iliac crest	Humerus (intertubercular groove)	Thoracodorsal	Adduct, extend arm, IR humerus	Connect UE to spine
Levator scapulae	C1-C4 transverse process	Superior medial scapula	Dorsal scapular/ C3- 4	Elevates scapula	Connect UE to spine
Rhomboid minor	C7-T1 spinous process	Medial scapula (at the spine)	Dorsal scapular	Adduct scapula	Connect UE to spine
Rhomboid major	T2-T5 spinous process	Medial scapula	Dorsal scapular	Adduct scapula	Connect UE to spine
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com					

MUSCLES: ROTATOR CUFF

3.Teres Minor	Lateral scapular	Greater tuberosity (inferior)	Axillary	ER arm, stability	Lissectivil can damage circum-flex vessels
4.Subscapularis	Subscapular fossa (scapula)	Lesser tuberosity	Upper Lower Subscapular	IR, adduct arm, stability	Can rupture in anterior dislocation

MUSCLES: DELTOID/PECTORAL REGION

MUSCLE	ORIGIN	INSERTION	NERVE	ACTION	COMMENT
Deltoid	Clavicle, Acromion, spine of scapula	Humerus (Deltoid tuberosity)	Axillary	Abduct arm	Atrophy: Axillary nerve damage
Pectoralis major	1.Clavicle 2.Sternum	Humerus (intertubercular groove)	Lateral/medial pectoral	Adducts arm, \mathbb{R} humerus	Can rupture during weight lifting
Pectoralis minor	Ribs 3-5	Coracoid process (scapula)	Medial pectoral	Stabilizes scapula	Divides Axillary artery into 3 parts
Serratus anterior	Ribs 1-8 (lateral)	Scapula (antero-medial border)	Long thoracic	Holds scapula to chest wall	Paralysis indicates wing scapula
Subclavius	Rib 1 (and costal cartilage)	Clavicle (inferior border/mid 3rd)	Nerve to subclavius	Depresses clavicle	Cushions sub- clavian vessels

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

NERVES

- C5-T1 ventral rami Variations: C4 (prefixed) T2 (post-fixed)
- Rami (Roots), Trunks, Divisions, Cords, Branches (Rob Taylor Drinks Cold Beer) Supraclavicular (rami trunks) portion in posterior triangle of neck Rami exit
- between Anterior Medial Scalene, then travel with Subclavian artery in axillary sheath

Divisions occur under (posterior) to clavicle and subclavius muscle

- Anterior Divisions: Flexors

Posterior Divisions: Extensors

- Infraclavicular (cords branches) portion in the axilla

1. Spinal Accessory (CN11,C1-C6): in posterior cervical triangle on levator scapulae			
Sensory: NONE			Motor: Trapezius, Sternocleidomastoid
CERVICAL PLEXUS			
2. Supraclavicular(C2-3): splits into 3: anterior middle, posterior branches			
Sensory: over clavicle, outer trap, deltoid			Motor: NONE
BRACHIAL PLEXUS			
SUPRACLAVICULAR [approach through posterior triangle]		INFRACLAVICULAR [approach through axilla]	
		LATERAL CORD	
ROOTS		-Lateral root to Median nerve	
3.Dorsal Scapular (C3, 4, 5): pierces middle scalene, deep to Levator		7. LateralPectoral(C5-7):named for cord, runs with pectoral artery	
		Sensory:	NONE
	Scapulae	Motor:	Pectoralis Major
Sensory:	NONE		Pectoralis Minor
Motor:	Levator scapulae	MEDIAL CORD	
	Rhomboid Minor and Major	-Medial root to Median nerve	
4.Long Thoracic(C5-7): on anterior surface of Serratus Anterior. Runs with lateral thoracicartery		8. MedialPectoral(C8-T1): named for cord	
		Sensory:	NONE
		Motor:	Pectoralis Minor
Sensory:	NONE		Pectoralis Major (overlying muscle]
Motor:	Serratus Anterior	POSTERIOR CORD	
UPPER TRUNK		9. UpperSubscapular(C5-6)	
5.Suprascapular(C5-6): thru scapular notch, under ligament		Sensory:	NONE
		Motor:	Subscapularis [upper portion]
Sensory:	Shoulder joint	10. LowerSubscapular(C5-6)	

Motor:	Supraspinatus	Sensory:	NONE
	Infraspinatus	Motor:	Subscapularis [lower portion]
6.Nerve to Subclavius (C5-6): descends anterior to plexus, posterior to clavicle		Teres major	
		11. Thoracodorsal(C7-8): runs with thoracodorsal artery	
Sensory:	NONE	Sensory:	NONE
Motor:	Subclavius	Motor:	Latissimus dorsi 12. Axillary(C5-6):with posterior circumflex humeral arterythrough Quadranglar space. Injured in Anterior dislocations, or proximal humerus fractures
		Sensory:	Lateral upper arm: via Superior Lateral Cutaneous Nerve of arm
		Motor:	Deltoid: via deep branch
			Teres minor: via superficial branch

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

TRUNK	BRANCH	COURSE/COMMENT
Thyrocervical Trunk	Suprascapular	Over superior transverse scapular ligament.
	Infraspinatous branch	Bends around spine of scapula
Subclavian artery comes off: Left - aorta, Right - brachiocephalic. Then goes between anterior and middle scalene muscles with brachial plexus		
Subclavian Artery	Dorsal Scapular	Splits around levator scapulae; descends medial to scapula
Parts determined by pectoralis minor. Part I of the axillaryartery has 1 branch, Part II has $\mathbf{2}$ branches, Part III has $\mathbf{3}$ branches		
Axillary (Part I)	Superior thoracic	To serratus anterior and pectoralis muscles
Axillary (Part II)	Thoracoacromial	
	Clavicular branch	
	Acromial branch	
	Deltoid branch	Courses with basilic vein
	Pectoral branch	
	Lateral thoracic	To serratus anterior with Long Thoracic nerve.
Axillary (Part III)	Subscapular	

Circumflex scapular	Seen posteriorly in Triangular space
Thoracodorsal	Follows Thoracodorsalnerve
Anterior circumflex	Supplies humeral head (anterior humerus)
Posterior circumflex	Seen posteriorly in Quadrangular space. Injury in proximal humeral fracture.

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

DESCRIPTION	H P	WORKUP/FINDINGS	TREATMENT
ADHESIVE CAPSULITIS (FROZEN SHOULDER)			
- Inflammatoryprocess; leads to joint fibrosis	Hx: Middle age women, DM Slow onset: pain/stiffness	XR: Usually normal	1.NSAIDs
		Arthrogram: decreased joint volume.	2.Physical therapy and home therapy program (3 month minimum)
-3 stages: 1. Pain, 2. Stiffness3. Resolving;	PE: Decreased active ROM passive ROM		
-Associated with old Colles fracture			
ARTHRITIS:ACROMIOCLAVICULAR (AC) JOINT			
- Usually osteoarthritis	Hx: Pain at AC, esp. with motion	XR: Osteophytes, joint narrowing	1.NSAIDs, rest
			2.Distal clavicle resection (Mumford)
	PE: Tender to palpation		
	ARTHRITIS:GLENOHUMORAL JOINT		
-Multiple etiologies: OA, RA, post-traumatic	Hx: Older, pain increases with activity	XR: True AP, axillary lateral: joint space narrowed	1. NSAIDs, ice/heat, ROM steroid inject controversial
- Often overuse condition	PE:+/- wasting, crepitus, decreased AROM		2.Refractory: hemi vs.total joint arthroscopy
BICEPS TENDINITIS			
-Associated with impinge- ment or subluxation/transverse humeral ligament tear	Hx : Pain in shoulder	XR: Normal views: usually normal	1.Treat the impingement
	PE: Tenderness along groove		2.Biceps strengthening
	+Speed, + Yergason		3.Tenodesis (rare procedure)
BICEPS TENDON RUPTURE			
-Long Head of biceps rupture	Hx : Old, or young weight lifter, sudden pain	XR: Normal; rule out fracture	1.Old: conservative treatment
		Arthrogram: rule out RC tear	2.Young/laborer: surgery
-Due to impingement, micro- trauma or trauma	PE: Proximal arm bulge (Popeye arm)		
-Associated with RC tear			
BRACHIAL PLEXUS INJURY			
-Traction of brachial plexus	Hx: Football players, parathesias in	XR: Shoulder series: normal	Most resolve with rest

				GI)
-Most anterior; Posterior rare, has increased Complications (great vessels)		CT: Helpful in diagnosis	Posterior: early closed reduction immobilize, PT	

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

SURGICALAPPROACHES

Deltopectoral Approach to Shoulder Joint

USES	INTERNERVOUS PLANE	DANGERS	COMMENT
ANTERIOR (DELTOPECTORAL) APPROACH (HENRY)			
1.Shoulder reconstruction	1.Deltoid [Axillary]	1.Musculocutaneous nerve	1.Keep arm adducted to avoid bringing brachial plexus into the field.
2.Biceps tendon repair.	2.Pectoralis major [lat/med pectoral]	2.Cephalic vein	
3.Arthroplasty		3.Axillary nerve	
			2.Keep dissection to lateral side of coracobrachialis: protect MC nerve.
ARTHROSCOPY PORTALS			
1.Anterior	"Soft spot" between biceps tendon, anterior glenoid, superior edge of subscapular tendon	1.Musculocutaneous nerve	1.Usually placed AFTER the posterior portal
		2.Cephalic vein	
		3.Axillary nerve	
2.Posterior	"Soft spot"between teres minor and infraspinatus	1.Superior AC ligament	1.Primary portal for shoulder
		2.RC tendons	2.Aim to coracoid when placing

3.Lateral Through deltoid 1.Axillary nerve subacromial

CHAPTER 3 - ARM

- TOPOGRAPHIC ANATOMY
- OSTEOLOGY
- TRAUMA
- ELBOW JOINTS
- MINOR PROCEDURES
- HISTORY
- PHYSICAL EXAM
- MUSCLES: INSERTIONS AND ORIGINS
- ANTERIOR MUSCLES
- POSTERIOR MUSCLES
- MUSCLES: CROSS SECTION
- NERVES
- ARTERIES
- DISORDERS
- SURGICAL APPROACHES

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

CHAPTER 3 - ARM

TOPOGRAPHIC ANATOMY

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

OSTEOLOGY

anterior view

CHARACTERISTICS	OSSIFY		FUSE	COMMENT
HUMERUS				
- Long bone characteristics	Primary: Shaft	8-9 th wk (fetal)	By birth	- Surgical neck: common fracture site
- Lateral condyle				- Blood supply
1. Epicondyle: nonarticular	Secondary Proximal (3):			Proximal: Anterior/Posterior circumflex
2. Capitellum: articular	1. Head		17- 20 yrs	Middle: Nutrient artery (from Deep artery)
- Medial condyle	2. Tuberosities (2)	Birth		
1. Epicondyle: nonarticular		$\begin{aligned} & 3-5 \\ & \text { yrs } \end{aligned}$		Distal: Branches from anastomosis
2. Trochlea: articular				- Elbow ossification order: Capitellum, Radial head, Medial epicondyle, Trochlea, Olecranon, Lateral epicondyle (Captain Roy Makes Trouble On Leave)
3. Cubital tunnel: covered with Osbourne's fascia.	Distal (4):			
	1. Capitellum	1 yr		
	2. Medial epicondyle	$4-6 \mathrm{yr}$	13- 14 yrs	
	3. Trochlea	$\begin{aligned} & 9-10 \\ & \mathrm{yr} \end{aligned}$		
	4. Lateral epicondyle	$12 \mathrm{yr}$	$\begin{aligned} & 15- \\ & 20 \\ & \text { yrs } \end{aligned}$	
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com				

TRAUMA

Neer Classification of Proximal Humerous Fractures		
2 Part	3 Part	4 Part
Anatomical neck		
Surgical neck		

DESCRIPTION	EVALUATION	CLASSIFICATION	TREATMENT
PROXIMAL HUMERUS FRACTURE			
- Common fracture	HX: Fall/trauma. Pain worse with movement	Neer: based on number of fragments(parts) 1-4	1 part: sling, early motion.
Osteoporosis, elderly, female	PE: Swelling, ecchymosis, good neurovascular exam	Multiple combinations of fractures possible	2 part: closed reduction splint. Irreducible, intraarticular anatomic neck fx: ORIF. Greater tuberosity fx: ORIF and Rotator Cuff repair
- Mechanism:			
1. Elderly: fall on outstretched hand	XR: Trauma series	Also fracture dislocation, and intraarticular fx	34 part : ORIF or hemiarthroplasty (elderly)
	CT: shows intraarticular glenoid involvement		
2. Young: high energy trauma (e.g. MVA, fall)	MR: sensitive for AVN	4 parts: head, shaft, greater and lesser tuberosities	Fracture/Dislocation:
- 80% non or minimally displaced (1 part fx)		Each part: 1 cm displaced or 45° angulated	2 part: closed treatment except when displaced
- Most heal well			3-4 part: ORIF or hemiarthorplasty

COMPLICATIONS: Stiffness/adhesive capsulitis; Avascular necrosis (AVN):4 part anatomic neck, axillary nerve and brachial plexus injury; axillary artery injury, nonunion

DESCRIPTION	EVALUATION	CLASSIFICATION TREATMENT	
HUMERUS SHAFT FRACTURE			
- Common fracture	HX: Trauma, fall. Severe pain, swelling	Descriptive:	Closed: Most fractures: coaptation splint or fracture brace for 6-8 weeks
- Mechanism: direct blow or fall on outstretched arm	PE: Swelling, deformity + / - radial nerve findings	Location: level of humerus	Open Neurovascular injury, multitrauma, pathologic fracture. Severe comminution requires plates/screws or intermedullary (IM) nail
- Displacement based on fracture site relation to deltoid pectoralis major insertion	XR: AP lateral arm, shoulder and elbow series	Pattern: oblique, spiral, transverse	
- Almost 100\% union		Displacement or comminution	
- Site of pathologic fx			
COMPLICATIONS: Radial nerve injury (esp. Holstein/Lewis fracture, spiral fracture of distal third) most resolve. Malunion is rare.			
DISTAL HUMERUS FRACTURE			
- Uncommon	HX: Pain, deformity, discoloration, swelling	Displaced vs. nondisplaced	Early motion important to avoid loss of motion
- High morbidity	PE: Swelling, ecchymosis crepitus, tenderness, good neurovascular exam	Multiple types:	Intercondylar: ORIF or total joint arthroplasty (closed treatment if comminuted or elderly)
- Often intraarticular	XR: AP lateral: posterior fat pad/sail sign	Intercondylar	Transcondylar: reduce, percutaneous pinning
- Mechanism: fall onto hand, ulna forced into humerus	CT: Optional: useful in pre-operative planning	Transcondylar	Others:

- Intercondylar most common in adults
- Condylar, capitellum, Trochlea, Epicondylar all rare

Supracondylar

Condylar

Nondisplaced: closed treatment; 10-14 days and early motion.

Displaced or comminuted (or elderly) require ORIF

Capitellum
Trochlea
Epicondylar (medial or lateral)

COMPLICATIONS: Stiffness/arthritis; Compartment syndrome; Median/Ulnar nerve injury; Brachial artery injury; Nonunion

DESCRIPTION
 EVALUATION
 CLASSIFICATION TREATMENT

SUPRACONDYLAR FRACTURE

- Common childhood fracture	HX: Fall. Pain, swelling, will not use arm.	Extension (common): Undisplaced Partially displaced Fully displaced	Neurovascularly intact: closed reduction and percutaneous pinning under general anesthesia (fluoroscopy)
- Occurs at metaphysis, above growth plate	PE: Swelling, point tenderness, + /neurovascular signs: check distal pulses do neurologic exam	Flexion (rare)	Pulseless/Perfused: same

- Extension type
most common(90\%): shaft is anterior, distal fragment is posterior
- Associated with signifcant morbidity; Arteriogram: if prompt treatment essential.

COMPLICATIONS: Neurovascular injury: brachial artery; AIN injury; Compartment syndrome can lead to Volkmann's ischemic contracture; Deformity: cubitus varus

Elbow Dislocation

Posterior dislocation of elbow with disruption of ligaments of posterior capsule. Note prominence of olecranon posteriorly.

XR: AP lateral (note capitellum position to anterior humeral line) Pulseless/Unperfused: open reduction exploration pulseless
altry, ".
nerve injury
bone or soft tissue

- Both collateral ligaments ruptured

Divergent (ulna
and radius opposite)

COMPLICATIONS Neurovascular injury: brachial artery; median or ulnar nerve; Loss of extension; Instability/redislocation; Heterotopic ossification

RADIAL HEAD SUBLUXATION (NURSEMAID'S ELBOW)
Reduce: with gentle, full supination and flexion (should feel it "pop" in).

Immobilize a recurrence
pulled or swung by hand or forearm

Hx: Pulled by hand, child will not use arm.

NONE Common in ages 2-4, 7 rare

- Annular ligament stretches, radial

XR: only if suspect fracture
it.
COMPLICATIONS: Recurrence

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

ELBOW JOINTS

JOINT	TYPE	ARTICULATION	LIGAMENTS	COMMENTS
ELBOW		Includes 3 joints	Capsule (common to all 3)	Carrying angle: $10-15^{\circ}$ valgus
Ulnohumeral "Trochlear joint"	Ginglymus [Hinge]	Trochlea and trochlear notch	Ulnar(medial) collateral: 1. Anterior band 2. Posterior band 3. Transverse band	Torn in posterior dislocation Strongest: resists valgus stress
Radiohumeral	Trochoid [Pivot]	Capitellum radial head	Radial (lateral) collateral 1. Ulnar part 2. Radial part	Weak Gives posterolateral stability
Proximal radioulnar		Radial head radial notch	Annular	Keeps head in radial notch
			Oblique cord	
			Quadrate	Supports rotary movements

STEPS
 ELBOW ARTHROCENTESIS

1. Extend elbow, palpate lateral condyle, radial head and olecranon laterally; feel triangular sulcus between all three
2. Prepare skin over sulcus (iodine/antiseptic soap)
3. Anesthetize skin locally (quarter size spot)
4. May keep arm in extension or flex it. Insert needle in the "triangle" between bony landmarks
5. Fluid should aspirate easily
6. Dress injection site

OLECRANON BURSAASPIRATION

1. Prepare skin over olecranon (iodine/antiseptic soap)
2. Anesthetize skin locally (quarter size spot)
3. Insert 18 gauge needle into bursa and aspirate fluid.
4. If suspicious of infection, send fluid for Gram stain and culture
5. Dress injection site

TENNIS ELBOW INJECTION

1. Ask patient about allergies
2. Flex elbow 90°, palpate ERCB distal to lateral epicondyle.
3. Prepare skin over lateral elbow (iodine/antiseptic soap)
4. Anesthetize skin locally (quarter size spot)

Insert 22 gauge or smaller needle into ERCB tendon at its insertion just distal to the 5. lateral epicondyle. Aspirate to ensure needle is not in a vessel, then inject 2-3ml of 1:1 local/corticosteroid preparation.
6. Dress insertion site
7. Annotate improvement in symptoms

Copyright ©2008 Elsevier Inc. Al rights reserved. - www.mdconsult.com

HISTORY

QUESTION	ANSWER	CLINICAL APPLICATION
1. AGE	Young	Dislocation, fracture
	Middle age, elderly	Tennis elbow (epicondylitis), arthritis
2. PAIN		
a. Onset	Acute	Dislocation, fracture, tendon avulsion/rupture, ligament injury
	Chronic	Cervical spine pathology
b. Location	Anterior	Biceps tendon rupture, arthritis
	Posterior	Olecranon bursitis
	Lateral	Lateral epicondylitis, fracture (especially radial headhard to see on x-ray)
	Medial	Medial epicondylitis, nerve entrapment, fracture, MCL strain
c. Occurrence	Night pain/at rest	Infection, tumor
	With activity	Ligamentous and/or tendinous etiology
3. STIFFNESS	Without locking	Arthritis, effusions (trauma)
	With locking	Loose body, Lateral collateral ligament injury
4. SWELLING	Over olecranon	Olecranon bursitis. Other: dislocation, fracture, gout

5. TRAUMA	Fall on elbow, hand	Dislocation, fracture
6. ACTIVITY	Sports, repetitive motion	Epicondylitis, ulnar nerve palsy
7. NEUROLOGIC SYMPTOMS	Pain, numbness, tingling	Nerve entrapments (multiple possible sites), cervical spine pathology, thoracic outlet syndrome
8. HISTORY OF ARTHRITIDES	Multiple joints involved	Lupus, rheumatoid arthritis, psoriasis

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

| EXAM/OBSERVATION TECHNIQUE | CLINICAL APPLICATION |
| :--- | :--- | :--- | :--- |
| INSPECTION | |

EXAM/OBSERVATION		
	TECHNIQUE	CLINICAL APPLICATION

Flex and extend	cinuvv atsiue, liex exuenu at elbow	note if P ROM AROM
Pronate and supinate	Tuck elbows, pencils in fists, rotate wrist	Normal: supinate 90 degrees, pronate 80-90 degrees
NEUROVASCULAR		
Sensory	(LT, PP, 2 pt)	
Axillary nerve (C5)	Superolateral arm	Deficit indicates corresponding nerve/root lesion
Radial nerve (C5)	Inferolateral and posterior arm	Deficit indicates corresponding nerve/root lesion
Medial Cutaneous nerve of the Arm (T1)	Medial arm	Deficit indicates corresponding nerve/root lesion
Motor		
Musculocutaneous n . (C5-6)	Resisted elbow flexion	Weakness = Brachialis/biceps or corresponding nerve/root lesion.
Musculocutaneous n . (C6)	Resisted supination	Weakness = Biceps or corresponding nerve/root lesion.
Median nerve (C6)	Resisted pronation	Weakness = Pronator Teres or corresponding nerve/root lesion.
Median nerve (C7)	Resisted wrist flexion	Weakness = FCR or corresponding nerve/root lesion.
Radial nerve (C7)	Resisted elbow extension	Weakness = Triceps or corresponding nerve/root lesion.
Radial nerve/PIN (C67)	Resisted wrist extension	Weakness = ECRL-B/ECU or corresponding nerve/root lesion.
Ulnar nerve (C8)	Resisted wrist flexion	Weakness = FCU or corresponding nerve/root lesion.
Reflexes		
C5	Biceps	Hypoactive/absence indicates corresponding radiculopathy
C6	Brachioradialis	Hypoactive/absence indicates corresponding radiculopathy
C7	Triceps	Hypoactive/absence indicates corresponding radiculopathy
Pulses	Brachial, Radial, Ulnar	
SPECIAL TESTS		
Tennis Elbow	Make fist, pronate, extend wrist and fingers against resistance	Pain at lateral epicondyle suggests lateral epicondylitis
Golfer's Elbow	Supinate arm, extend wrist Elbow	Pain at medial epicondyle suggests medial epicondylitis
Ligament Instability	25° flexion, apply varus/valgus stress	Pain or laxity indicates LCL/MCL damage
Tinel's Sign (at the elbow)	Tap on ulnar groove (nerve)	Tingling in ulnar distribution indicates entrapment
Fihnow Flovinn	Maximal elbow flexion for	Tingling in ulnar distribution

 indicates entrapment Inability (or pinching of pads, not tips) indicates AIN pathology

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

ANTERIOR MUSCLES

MUSCLE	ORIGIN	INSERTION	NERVE	ACTION	COMMENT
Coracobrachialis	Coracoid process	Middle humerus	Musculocutaneous	Flex and adduct arm	
Brachialis	Distal anterior humerus	Ulnar tuberosity	Musculocutaneous	Flex forearm	Often split in anterior surgical approach
Biceps brachii					
Long Head	Supraglenoid tubercle	Radial tuberosity (proximal radius)	Musculocutaneous	Flex supinate forearm	Can rupture proximallyresults in Popeye arm
Short Head	Coracoid process	Radial tuberosity (proximal radius)	Musculocutaneous	Flex supinate forearm	Covers brachial artery

POSTERIOR MUSCLES

MUSCLE	ORIGIN	INSERTION NERVE ACTION	COMMENT		
Triceps Brachii					
Long Head	Infraglenoid tubercle	Olecranon (proximal)	Radial n.	Extends forearm	Border of quadrangular triangular space interval
Lateral Head	Posterior humerus (proximal)	Olecranon (proximal)	Radial n.	Extends forearm	Border in lateral approach
Headial	Posterior humerus (distal)	Olecranon (proximal)	Radial n.	Extends forearm	One muscular plane in posterior approach
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com					

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier
MUSCLES: CROSS SECTION

Cutaneous Innervation

INFRACLAVICULAR [approach through axilla]

LATERAL CORD

1. Musculocutaneous (C5-7): pierces coracobrachialis between bicep and brachialis. At risk for injury during anterior approach to shoulder.

Sensory: NONE (in arm)
Motor: ANTERIOR COMPARTMENT OF ARM
Coracobrachialis
Biceps brachii
Brachialis

MEDIAL CORD

2. Medial Cutaneous Nerve of Arm (C8-T1): joins intercostal-brachial nerve

Sensory: Medial (inner) arm
Motor: NONE
3.UInar (C(7)8-T1): travels from anterior to posterior compartment via arcade of Struthers [${ }^{*}$], then to cubital tunnel [${ }^{\star}$].

Sensory: NONE (in arm)
Motor: NONE (in arm)
POSTERIOR CORD
4.Radial (C5-T1): runs with deep artery of arm in triangular interval, then spiral groove 15 cm from elbow (injured in shaft fx; at risk in surgery), then it divides at the elbow: 1. PIN (motor), 2. superficial radial nerve (sensory)

Sensory: Lateral arm: via Inferior Lateral Cutaneous Nerve of arm
Posterior arm: via Posterior Cutaneous Nerve of arm
Motor: POSTERIOR COMPARTMENT OF ARM
Triceps [medial, long, lateral heads]
possible compression site

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

	-. iviusculai branches	Variable, usually branch laterally
	6. Radial artery	These are the two terminal branches of Brachial artery, it divides in the cubital fossa.
	7. Ulnar artery	
Deep Artery of arm	Radial collateral	*Anastomosis with Radial recurrent artery at elbow
	Middle collateral	*Anastomosis with Recurrent interosseous artery at elbow
Radial Artery	Radial Recurrent	*Anastomosis with radial collateral artery at elbow
Ulnar Artery	Anterior ulnar recurrent	*Anastomosis with inferior ulnar collateral artery at elbow
	Posterior ulnar recurrent	*Anastomosis with superior ulnar collateral artery at elbow
	Common interosseous artery Recurrent interosseous artery	
		*Anastomosis with middle collateral artery at elbow
Collateral branches are all superior branches, recurrent branches are all inferior branches of the anastomosis at the elbow		
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com		

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier

DISORDERS

DESCRIPTION	H P	WORKUP/FINDINGS	TREATMENT
ARTHRITIS			
- Uncommon condition	Hx: Chronic pain stiffness	XR: OA vs. inflammatory	1. Conservative (rest, NSAID)
- Osteoarthritis seen in athletes	PE: Decreased ROM tenderness	Blood: RF, ESR, ANA	2. Debridement
- Site for arthritides		Joint fluid: crystals, cells, culture	3. Joint replacement
BICEPS TENDON RUPTURE			
- Trauma: forced elbow flexion against resistance	Hx : Acute onset of pain	XR: usually normal	Surgical reattachment
- Rare (proximal distal)	PE: Decreased or absent elbow flexion		
CUBITAL TUNNEL SYNDROME			
- Trauma or stretching of ulnar nerve in cubital tunnel	Hx: Numbness/tingling (+ / - pain) in ulnar distribution	XR: Usually negative	1. Rest, ice, NSAID
- Occurs near FCU origin	PE: + / - decreased grip strength, Tinel's and/or elbow flexion test	Nerve conduction: gives objective data, but often not necessary	2. Splints (day and/or night)
- Can also be trapped at arcade of Struthers			3. Casting
			4. Nerve decompression and transposition
LATERAL EPICONDYLITIS (Tennis Elbow)			
- Degeneration of common extensor tendons (esp. ECRB)	Hx: Age 30-60, chronic pain at lateral elbow, worse with wrist finger extension	XR: Rule out fracture OA. Calcification of tendons can occur (esp. ECRB)	1. Activity modification, ice, NSAIDs
- Due to overuse (e.g. tennis) or injury (microtrauma)	PE: +Tennis elbow test		2. Use of brace or strap
			3. Stretching/strengthening
			4. Corticosteroid injection
			5. Surgical release of tendon
LCL SPRAIN			
- Rare condition	$\mathrm{Hx}:+/$ - catching and locking	XR: Usually negative	Conservative unless recurrent subluxation, then surgical reconstruction
	PE: + instability with varus stress, + posterolateral (pivot shift) drawer		

MCL SPRAIN			
- Due to single traumatic or repetitive valgus stress	$H x$: Young, throwing athletes, chronic pain or acute onset of pain at MCL, $+/-$ "pop"	XR: occasional spur; rule out fracture (+ / stress view)	Grade I II: conservative (rest, ice, NSAID)
- Usual mechanism: throwing	PE: + / - instability with valgus stress	MRI: before surgery	Grade III (complete tear): surgical repair (use PL)
- Anterior Band is affected			
MEDIAL EPICONDYLITIS (Golfer's Elbow)			
- Degeneration of pronator/ flexor group (PT FCR)	Hx: Medial elbow pain	XR: Rule out fracture OA. Calcification of tendons can occur	Same as Tennis elbow
- Due to injury or overuse	PE: Focal medial epicondyle tenderness, + Golfer's elbow test		Surgery is less effective than for lateral epicondylitis
OLECRANON BURSITIS			
- Inflammation of bursa (Infection/trauma/other)	Hx: Swelling, acute or chronic	Aspirate bursa: send purulent fluid for culture and Gram stain	1. Compressive dressing
	PE: Palpable mass at olecranon		2. Reaspirate if recurs
			3. Corticosteroid injection
OSTEOCHONDRITIS DISSECANS OF ELBOW: OCD			
- Repetitive valgus stresses (e.g. throwing or gymnastics)	Hx: Young, active (thrower or gymnast), lateral elbow pain	XR: lucency and/or loose body	Type I (fragment stable) Ice, discontinue activity, NSAID
- Vascular compromise and microtrauma of capitellum	PE: + / - catching and/or locking, crepitus with pronation and supination	CT/MRI: determine articular and subchondral involvement	Type II-III (loose fragment): Drill or curette fragment
TRICEPS TENDON RUPTURE			
- Trauma: forced elbow extension against resistance	Hx: Pain in posterior elbow	$X R$: usually normal	Surgical reattachment
	PE: Loss of active elbow extension		
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com			

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier

SURGICALAPPROACHES

USES	INTERNERVOUS PLANES	DANGERS	COMMENT
HUMERUS: ANTERIORAPPROACH			
1. ORIF of fractures	Proximal 1. Deltoid [Axillary]	Proximal 1. Axillary nerve	- Anterior humeral circumflex
	Pectoralis 2. Major [Pectoral]	Humeral 2. circumflex artery	artery may need ligation.
2. Bone biopsy or tumor removal.			- The brachialis has a split innervation which can be used for an internervous plane.
	Distal		
	Brachialis splitting 1. Lateral [Radial] Medial [MC]	Distal 1. Radial nerve	
ELBOW: LATERALAPPROACH (KOCHER)			
Most radial head procedures	1. Anconeus [Radial]	1. PIN	- Protect PIN: stay above annular ligament; keep forearm pronated
	2. $\mathrm{ECU}[\mathrm{PIN}]$	2. Radial nerve	

CHAPTER 4 - FOREARM

- TOPOGRAPHIC ANATOMY
- OSTEOLOGY OF THE FOREARM
- OSTEOLOGY OF THE WRIST
- TRAUMA
- JOINTS: WRIST
- OTHER WRIST STRUCTURES
- MINOR PROCEDURES
- HISTORY
- PHYSICAL EXAM
- MUSCLES: ORIGINS \& INSERTIONS
- ANTERIOR COMPARTMENT MUSCLES: SUPERFICIAL FLEXORS
- POSTERIOR COMPARTMENT MUSCLES: SUPERFICIAL EXTENSORS
- ANTERIOR COMPARTMENT MUSCLES: DEEP FLEXORS
- POSTERIOR COMPARTMENT MUSCLES: DEEP EXTENSORS
- MUSCLES: CROSS SECTIONS
- NERVES
- ARTERIES
- DISORDERS: ARTHRITIS \& INSTABILITY
- DISORDERS: NERVE COMPRESSION
- OTHER DISORDERS
- SURGICAL APPROACHES

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

CHAPTER 4 - FOREARM

TOPOGRAPHIC ANATOMY

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

OSTEOLOGY OF THE FOREARM

CHARACTERISTICS	OSSIFY		FUSE	COMMENT
RADIUS				
- Cylindrical long bone - Head within elbow joint - Tuberosity outside joint - Palpate head laterally - Styloid is distal	Primary: Shaft Secondary 1. Proximal epiphysis 2. Distal epiphysis	8-9 weeks (fetal) 1-9 years	1421 years	Elbow ossification: - used to determine bone age in peds Elbow ossification order: Capitellum, Radial head, Medial epicondyle, - Trochlea, Olecranon, Lateral Epicondyle (Captain Roy Makes Trouble On Leave)
ULNA				
- Cylindrical long bone Olecranon	Primary: Shaft	8-9 weeks		Olecranon

Secondary
(fetal)
10
16-
and coronoid
posteriorly at elbow
Styloid
Olecranon
years
years

- give the elbow bony stabilization.

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

OSTEOLOGY OF THE WRIST

CHARACTERISTICS	OSSIFY	FUSE	COMMENT
PROXIMAL ROW			
Scaphoid: boat shaped, 80% of surface is articular (not the waist)	5th 5 years	$\begin{aligned} & 14- \\ & 16 \\ & \text { yrs } \end{aligned}$	- Lies beneath the anatomic snuffbox Distal (to waist) blood supply (radial - artery); proximal pole is susceptible to necrosis if injured
Lunate: moon shaped	4th 4 years	$\begin{aligned} & 14- \\ & 16 \\ & \text { yrs } \end{aligned}$	- Dislocations often missed Blood supply is palmar: palmar fractures need ORIF to protect against osteonecrosis; dorsal fractures treated nonsurgically
Triquetrum: pyramid shaped	3rd 3 years	$\begin{aligned} & 14- \\ & 16 \\ & \text { yrs } \end{aligned}$	
Pisiform: large sesamoid bone	$\begin{aligned} & 8 \text { th } 9- \\ & 12 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 14- \\ & 16 \\ & \text { yrs } \end{aligned}$	- In the FCU tendon; TCL attaches
DISTAL ROW			
Trapezium: most radial	6th 5-6 years	$\begin{aligned} & 14- \\ & 16 \\ & \mathrm{yrs} \end{aligned}$	- Articulates with 1st metacarpal; TCL attaches, FCR
Trapezoid: wedge shape	7th 5-6 years	$\begin{aligned} & 14- \\ & 16 \\ & \text { yrs } \end{aligned}$	- Articulates with 2nd metacarpal
Capitate: largest carpal bone	1st 1 year	$\begin{aligned} & 14- \\ & 16 \\ & \text { yrs } \end{aligned}$	- First to ossify
Hamata hacahank	2nd 1-2	$\begin{aligned} & 14- \\ & 16 \end{aligned}$	TCI ECllattorhtatho

ilairiais．itas a imun

Ossification：each from a single center：counterclockwise（anatomic position）starting with capitate

Carpal tunnel borders：Roof：Transverse carpal ligament；Lateral wall：scaphoid trapezium；Medial wall：pisiform hamate Contents：Median nerve，flexor tendons

Guyon＇s canal：Roof：volar carpal ligament；Floor：TCL；Lateral wall：hamate（hook）； Medial wall：pisiform Contents：Ulnar nerve and artery

Anatomic snuffbox：Between tendons of EPL and EPB；Contents：Radial artery（scaphoid directly deep to snuffbox）

Copyright © 2008 Elsevier Inc．All rights reserved．－www．mdconsult．com

Fracture of both radius and ulna with angulation, shortening, and comminution of radius

DESCRIPTION	EVALUATION	CLASSIFICATION	TREATMENT
OLECRANON FRACTURE			
Mechanism: fall - directly on elbow; fall on hand - Articular surface always involved - Triceps tendon pulls fragment	HX: Fall/trauma. Swelling, pain, +/- numbness. PE: Effusion, tenderness +/- decreased elbow extension. Good neurovascular exam (esp. ulnar nerve) XR: AP/lateral	Colton: Undisplaced: 2mm Displaced -avulsion transverse/oblique -comminuted fracture/dislocation	Undisplaced: Cast at 45-90 ${ }^{\circ}$ for 3 weeks, then gentle ROM Displaced: ORIF with tension band wires or bicortical screw. (comminuted fracture: excise bone then reattach triceps)
COMPLICATIONS: Ulnar nerve injury (most resolve); Decreased ROM; Arthritis			
RADIAL HEAD FRACTURE			
- Common Fall on outstretched - arm radius pushed into capitellum - Intraarticular fracture Can be associated - with elbow dislocation	HX: Fall. Pain, swelling, decreased function. PE: Tenderness of radial head, decreased ROM especially pronation/supination. Test MCL stability XR: AP/lateral: +fat pad	Mason: 4 Types I: Undisplaced II: Displaced III: Comminuted (head) N : Fracture with elbow dislocation	Type I: Splint for 3 days, then early ROM Type II: If motion intact-splint, then early ROM. If $1 / 3$ of head involved or 3 mm displacedORIF or excision

COMPLICATIONS: Decreased ROM; Instability

BOTH BONE FRACTURE

- Mechanism: high energy injuries

Fractures in shaft of single bone shorten,

- resulting forces cause fracture in other bone

Nightstick fracture:

- ulnar shaft fracture only

HX: Trauma. Pain, swelling.
PE: Tenderness, deformity. Check compartments and do neurovascular PE

XR:AP/lateral: including wrist and elbow

Descriptive

- Undisplaced
- Displaced
- Comminuted

ORIF (usually plates and screws) through two separate incisions.
Nightstick: Undisplacedclosed treatment; Displaced-ORIF
Peds: closed, LAC 6-8wks

COMPLICATIONS: Loss of Pronation and supination; Nonunion

CLASSIFICATION
TREATMENT
MONTEGGIAFRACTURE
Bado (based on radial head location):
l: Anterior
(common)
II: Posterior

Ulna: ORIF (plates/screws)
Radial head: closed reduction (open if irradirinihla or

Mechanism: direct

- blow or fall on outstretched hand.
neurovascular exam.
XR: AP/lateral: including wrist and elbow series.

III: Lateral
N : Anterior with associated both bone fracture.
"ICuUvinic u unstable).
Peds: closed reduction cast.

COMPLICATIONS: Radial nerve/PIN injury (most resolve); Decreased ROM; Compartment Syndrome; Nonunion

GALEAZZI/PIEDMONT FRACTURE

Mechanism: fall on outstretched hand.

Distal radial shaft fracture, shortening

- forces result in distal radioulnar dislocation.
HX: Fall. Pain, swelling.
PE Tenderness, deformity. Check compartments and do neurovascular exam.

XR: AP/lateral: including wrist and elbow

By mechanism:
Pronation:
Galeazzi
Supination:
Reverse Galeazzi (ulna shaft fracture with DRUJ dislocation)

Radius: ORIF (plate/screws)
DRUJ: closed reduction, +/percutaneous pins. (open treatment if unstable)
Cast immobilization for 4-6wks.

Peds: closed reduction, cast.

COMPLICATIONS: Nerve injury; Decreased ROM; Nonunion; Distal radioulnar joint (DRUJ) arthrosis

DESCRIPTION EVALUATION CLASSIFICATION TREATMENT

DISTAL RADIUS FRACTURE

- Very common
(Colles\#1)
- Fall on outstretched arm

HX: Fall. Pain, swelling.
PE: Swelling,

Frykman (for Colles):
Type I, II: extraarticular

Close reduce, immobilize with WELL molded cast. (volar flexinn illnar

Colles fracture: dorsal

- displacement (apex volar), radial shortening, dorsal angulation.
Smith fracture:
- volar
displacement (apex dorsal)
Barton fracture:
- radial rim carpus displace together
Radial styloid
- (chauffeur fracture)
deformity, tenderness to palpation.Good neurovascular exam.
XR: AP/lateral: normal radius:

1. 23° radial inclination 13 mm
2. radial height
3. 11° volar tilt

COMPLICATIONS: Loss of motion; Deformity; Median nerve injury; Malunion; Scapholunate dislocation

Carpal Dislocation

Palmar view shows (A) lunate rotated and displaced volarly, (B) scapho-
lunate space widened, (C) capitate lunate space widened, (C) capitate displaced proximally and dorsally

Lateral view shows lunate displaced volarly and rotated. Broken line indicates further dislocation to volar aspect of distal radius

DESCRIPTION EVALUATION CLASSIFICATION TREATMENT

SCAPHOID FRACTURE

- Most common
carpal fracture
Fall on
- outstretched arm
High
- complication rate

HX: Fall. Pain
worse with
gripping,
swelling.
PE: "Snuffbox"
tenderness, swelling on radial wrist
XR: AP/lateral:

If clinical symptoms with negative xray: thumb spica for 1014days then re-evaluate.
Nondisplaced: cast 6-12 wks

COMPLICATIONS: Nonunion/malunion; Osteonecrosis: especially of proximal pole; Degenerative Joint Disease (DJD)

CARPAL DISLOCATION: PERILUNATE INSTABILITY

Uncommon:

- hyperextension supination injury
Injury determined by
- a progression of ligament disruption (see joint chart)
Space of
- Poirer is weak
(Capitatelunate joint)

HX: Fall. Pain.
PE: Wrist pain, + Mayfield (4 stages): Watson sign.
XR: AP/lateral:
3 mm SL gap is
Terry Thomas
sign.+/-2
Scaphoid ring sign
Cinearthrogram:
definitive
diagnosis

I: Scapholunate diastasis
II: Perilunate dislocation
III: Lunotriquetral diastasis
IV: Volar lunate dislocation.

Closed reduction and cast simple cases.

Open reduction, pin fixation, and primary ligament repair usually required.

COMPLICATIONS: Wrist instability and/or pain; SLAC wrist

Common in

- children
(usually ages
$6-12$) Hx :

Mnのhaniom

Trauma.
Torus:
Pain, inability to

Torus(Buckle):concave cortex compresses reduction rarely use arm
\square
iviectial ilsili.
fall on hand most common

- Distal radius most common Increased flexibility of
- pediatric bone allows only one cortex to be involved
-.-- -......
PE:+/deformity. Point tenderness swelling.
XR: AP and lateral: only one cortex involved.
(buckles), convex/tension side: intact

Greenstick: concave cortex intact, convex/tension side fracture/plastic deformity

COMPLICATIONS: Deformity; Malunion; Neurovascular injury (rare)

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

JOINTS: WRIST

LIGAMENTS	ATTACHMENTS	COMMENTS
	RADIOCARPAL (Ellipsoid type)	
Bones: radius, scaphoid, lunate, triquetrum		
Capsule	Surrounds joint	Loose, provides little support
Volar radiocarpal [VRC]	Multiple intracapsular ligaments	Strong; space of Poirier (lunocapitate) is weak. Injury leads to instability.
Radioscaphocapitate [RCL]	Radial styloid to capitate	Stabilizes radial wrist, distal row, midcarpal joint. Disrupted in perilunate instability stage II.
Radioscapholunate [RSL]	Radial styloid to lunate	Stabilizes radial wrist, scapholunate joint; Disrupted in DISI, perilunate instability stage I.
Radiolunotriquetral [RTL]	Radial styloid to triquetrum	Largest, volar sling for lunate, lunotriquetral joint stabilizer. Disrupted in perilunate instability stage III.
Dorsal radiocarpal [DRC]	Radius, scaphoid, lunate, triquetrum	Weak; stabilizes proximal row, radiolunate joint. Disrupted in perilunate instability stage V .
Radial collateral	Radius, scaphoid, trapezium, TCL	Stabilizes proximal row. Radial artery runs adjacent to it.
RADIOULNAR (Pivot type)		
Triangular Fibrocartilage Complex (TFCC): Multiple components stabilize joint, absorbs axial load; any tear or injury results in pain		
COMPONENT	ORIGIN	INSERTION
Dorsal Volar Radioulnar	Ulnar radius	Caput ulna
Triangular fibrocartilage (disc)	Radius/ulna	Triquetrum
Meniscus homologue	Ulna/disc	Triquetrum
Ulinar collateral/ECU	Ulna	Fifth metacarpal
OTHER LIGAMENTS		
Ulnocarpal:	Often considered part of TFCC; Stabilizes proximal row of carpus	
Ulnolunate	Ulna	Lunate

Proximal Row	Gliding	2 Dorsal intercarpal 2 Palmar intercarpal 2 Interosseous	Scapholunate, lunotriquetral Scapholunate, lunotriquetral Scapholunate, lunotriquetral.	stabillze SL or LT joints DISI: SL ligament injury VISI: LT ligament injury
Pisiform Articulation		Capsule Ulnar collateral Volar radiocarpal Pisohamate Pisometacarpal	Pisiform triquetrum	Holds it proximally
			Ulina to pisiform	Holds it proximally
			RCL to pisifrom	Assists FCU; roof
			Pisiform to hamate	of Guyon's canal
			Pisiform to 5th metacarpal	Assists FCU flexion
Distal Row	Gliding	3 Dorsal intercarpal 3 Palmar intercarpal 2 interosseous	All four bones in distal row	
			All four bones	Thicker
			in distal row	than proximal
			Trapezoid to capitate to hamate	
MIDCARPAL				
	Ellipsoid			$1 / 3$ of wrist extension,
		Palmar (Volar) intercarpal	Proximal	$2 / 3$ of wrist
		Carpal collaterals	distal carpal rows	occurs here
		Capitotriquetral (CTL)	triquetrum	Radial stronger than ulnar
				Stabilizes distal row
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com				

OTHER WRIST STRUCTURES

STRUCTURE	FUNCTION	COMMENT
Extensor Retinaculum Dorsal Compartments	Covers dorsum of the wrist I: APL, EPB II: ECRL, ECRB III: EPL N: EDC, EIP V: EDM VI: ECU	Forms six fibroosseous dorsal compartments DeQuervain's tenosynovitis can develop here Tendinitis (carpal bossing) Around Lister's tubercle: tendon can rupture Tenosynovitis, ganglions Jackson-Vaughn syndrome (rupture from RA) Tendon can "snap" over ulnar styloid
Transverse Carpal Ligament (TCL, Flexor Retinaculum)	Covers volar wrist Attaches to: Medial: pisoform hook of hamate Lateral: scaphoid trapezium	Roof of carpal tunnel, floor of Guyon's canal (ulnar nerve can entrap here)

WRIST ASPIRATION/INJECTION

1. Ask patient about allergies
2. Palpate radiocarpal joint dorsally for EPL,ECRB, Lister's tubercle and the space ulnar to them
3. Prepare skin over dorsal wrist (iodine/antiseptic soap)
4. Anesthetize skin locally (quarter size spot)

Aspiration: Insert 20 gauge needle into space ulnar to Lister's tubercle/ECRB and
5. radial to EDC, aspirate.

Injection: Insert 22 gauge needle into same space, aspirate to ensure not in vessel, then inject $1-2 \mathrm{ml}$ of local or local/steroid preparation into RC joint.
6. Dress injection site
7. If suspicious for infection, send fluid for Gram stain culture CARPAL TUNNEL INJECTION/MEDIAN NERVE BLOCK

1. Ask patient about allergies

Ask patient to pinch thumb and small finger tips, Palmaris longus (PL) tendon will
2. protrude ($10-20 \%$ do not have one) median nerve is directly beneath PL, just ulnar to FCR
3. Prepare skin over volar wrist (iodine/antiseptic soap)
4. Anesthetize skin locally (quarter size spot)
5. Insert 22 gauge or smaller needle into wrist under PL at flexion crease. Aspirate to ensure needle is not in a vessel. Inject $1-2 \mathrm{ml}$ of local or local/steroid preparation.
6. Dress injection site

HISTORY

QUESTION	ANSWER	CLINICAL APPLICATION
1. AGE	Young Middle ageelderly	Trauma: fractures and dislocations, ganglions Arthritis, nerve entrapments, overuse
PAIN 2. a. Onset b. Location	Acute Chronic Dorsal Volar Radial Ulnar	Trauma Arthritis Kienbock's disease, ganglion Carpal tunnel syndrome (CTS), ganglion (especially radiovolar) Scaphoid fracture, DeQuervain's tenosynovitis, arthritis Triangular Fibrocartilage Complex(TFCC) tear, tendinitis
3. STIFFNESS	with dorsal pain with volar pain (at night)	Kienbock's disease Carpal tunnel syndrome
4. SWELLING	Joint: after trauma Joint: no trauma Along tendons	Fracture or sprain Arthritides, infection, gout Flexor or extensor tendinitis (calcific), DeQuervain's disease
5. INSTABILITY	Popping, snapping	apholunate dissociation

6. MASS	Along wrist joint	Ganglion			
7. TRAUMA	Fall on hand	Fractures: distal radius, scaphoid; Dislocation: lunate, ulna TFCC tear			
8. ACTIVITY	Repetitive motion (typing)	Carpal Tunnel Syndrome (CTS), DeQuervain's tenosynovitis			
9. NEUROLOGIC SYMPTOMS	Numbness, tingling Weakness	Nerve entrapment, thoracic outlet syndrome, radiculopathy Nerve entrapment (median (e.g. CTS), ulnar, or radial)			
10. HISTORY OF ARTHRITIDES	Multiple joints involved	Arthritides	$	$	Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com
:---					

EXAMINATION	TECHNIQUE	CLINICAL APPLICATION
INSPECTION		
Gross deformity Swelling	Bones and soft tissues Especially dorsal or radial Diffuse	Fractures, dislocations: forearm and wrist Ganglion Trauma, infection
PALPATION		
Skin changes	Warm, red Cool, dry	Infection, gout Neurovascular compromise
Radial and Ulnar styloids	Palpate each separately	Tenderness may indicate fracture
Carpal bones	Both proximal and distal row	Snuffbox tenderness: scaphoid fracture; lunate tenderness: Kienbock's disease.
	Proximal row Pisiform	Scapholunate dissociation Tenderness: pisotrequetral arthritis or FCU tendinitis
Soft tissues	6 dorsal extensor compartments TFCC: distal to ulnar styloid Compartments	Tenderness over 1 st compartment: DeQuervain's disease Tenderness indicates TFCC injury Firm/tense compartments: compartment syndrome
RANGE OF MOTION		
Flex and extend	Flex (toward palm), extend opposite	Normal: flexion 80°, extension 75°
Radial/ulnar deviation Pronate and supinate	In same plane as the palm Flex elbow 90° : hold pencil, rotate wrist	Normal: radial $15-20^{\circ}$, ulnar $30-40^{\circ}$ Normal: supinate 90°, pronate $80-90^{\circ}$ (only $10-15^{\circ}$ is in the wrist, most motion is in elbow)
NEUROVASCULAR		
Sensory	(LT, PP, 2 pt)	
Musculocutaneous nerve (C6)	Lateral forearm	Deficit indicates corresponding nerve/root lesion
Medial Cutaneous nerve of forearm (T1)	Medial forearm	Deficit indicates corresponding nerve/root lesion
Motor		

Push scaphoid
Watson anteroposterior with wrist in radial or ulnar deviation

Occlude radial ulnar Allen arteries, pump fist then release one artery only

Positive if scaphoid subluxes or reduces: carpal ligament injury

Delay or absent of "pinking up" of palm suggest arterial compromise of artery released

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier
MUSCLES: ORIGINS INSERTIONS

	PROXIMAL ULNA

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed

Copyright © 2001 Saunders, An Imprint of Elsevier
ANTERIOR COMPARTMENT MUSCLES: SUPERFICIAL FLEXORS

MUSCLE	ORIGIN	INSERTION	NERVE	ACTION	COMMENT
Pronator Teres [PT]	Medial epicondyle coronoid process	Lateral radiusmiddle $1 / 3$	Median	Pronate and flex forearm	May trap AIN (AIN syndrome)
Flexor carpi radialis [FCR]	Medial epicondyle	Base of 2nd 3rd metacarpal	Median	Flex wrist, radial deviation	Radial artery is immediately lateral
Palmaris Longus [PL]	Medial epicondyle	Flexor retinaculum palmar aponeurosis	Median	Flex wrist	Used for tendon transfers. 10\% congenitally absent
Flexor carpi ulnaris [FCU]	Medial epicondyle posterior ulna	Pisoform, hook of hamate, 5 th MC	Ulnar	Flex wrist, ulnar deviation	Most powerful wrist flexor

MUSCLE	ORIGIN	INSERTION	NERVE	ACTION	COMMENT
Flexor digitorum superficialis [FDS]	1. Medial epicondyle, coronoid process	Middle phalanges of digits (not thumb)	Median	Flex PIP (also flex digit and hand)	Sublimus test will isolate test function
	2. Anteroproximal radius				

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

POSTERIOR COMPARTMENT MUSCLES: SUPERFICIAL EXTENSORS

MUSCLE	ORIGIN	INSERTION	NERVE	ACTION	COMMENT
Flexor digitorum profundus [FDP]	Anterior ulna Interosseus membrane	Distal phalanx (IF/MF)	Median/AIN	Flex DIP (also flex digit and hand)	Avulsion: Jersey finger.
		Distal phalanx (RF/SF)	Ulnar		FDP and FPL are most susceptible to Volkmann's contracture.
Flexor pollicis longus [FPL]	Anterior radius coronoid process	Distal phalanx of thumb	Median/AIN	Flex thumb (IP)	
Pronator quadratus [PQ]	Medial distal ulna	Anterior distal radius	Median/AIN		Pronate forearm

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

MUSCLE	ORIGIN	INSERTION	NERVE	ACTION	COMMENT
Anaconeus	Posteriorlateral epicondyle	Posterior-poximal ulna	Radial	Forearm extension	Must retract on Kocher approach
Mobile Wad(3)					
Brachioradialis [BR]	Lateral supracondylar humerus	Lateral distal radius	Radial	Forearm flexion	Is a deforming force in radius fractures.
Extensor carpi radialis longus [ECRL]	Lateral supracondylar humerus	Base of 2nd MC	Radial	Wrist extension	Used for tendon transfer
Extensor carpi radialis brevis [ECRB]	Lateral epicondyle	Base of 3rd MC	Radial	Wrist extension	Inflamed in Tennis elbow, can compress PIN
Extensor digitorum [ED]	Lateral epicondyle	Sagittal bands, central slip, distal phalanx	Radial- PIN	Digit extension	Distal avulsion is mallet finger injury
Extensor digiti minimi [EDM]	Lateral epicondyle	Sagittal bands, central slip, distal phalanx of SF	Radial- PIN	SF extension	In 5th dorsal compartment.
Extensor carpi ulnaris [ECU]	Lateral epicondyle	Base of 5th MC	RadialPIN	Hand extension and	Must retract on Kocher annroanh

MUSCLE	ORIGIN	INSERTION	NERVE	ACTION	COMMENT
Supinator	Posterior medial ulna	Proximal lateral radius	RadialPIN	Forearm supination	Can compress PIN
Abductor pollicis longus [APL]	Posterior radius/ulna	Base of 1st MC	RadialPIN	Abduct and extend thumb (CMC)	1st compartment: DeQuervain Disease
Extensor pollicis brevis [EPB]	Posterior radius	Base of proximal phalanx of thumb	RadialPIN	Extend thumb (MCP)	Same as above, radial border of snuffbox
Extensor pollicis longus [EPL]	Posterior ulna	Base of thumb distal phalanx	RadialPIN	Extend thumb (\mathbb{P})	Tendon turns 45° on Lister's tubercle
					Border of snuffbox
Extensor indicis proprius [EIP]	Posterior ulna	Sagittal bands, central slip, distal phalanx of index finger	RadialPIN	Index finger extension	Used in tendon transfer

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier
MUSCLES: CROSS SECTIONS

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

LATERAL CORD

Musculocutaneous (C5-7): only sensory in the forearm
\square
Sensory: Lateral forearm [via Lateral cutaneous nerve of forearm]
Motor: NONE (in forearm)

MEDIAL CORD
Medial Cutaneous Nerve of Forearm (Antibrachial) (C8-T1): runs with basilic vein

Sensory:	Medial forearm anterior arm	
Motor:	NONE	
		Ulnar (C(7)8-T1): runs behind medial epicondyle in groove and between 2 heads of ECU[^], then under $\mathrm{FCU}\left[{ }^{\star}\right]$, then to Guyon's canal [^].

Sensory: NONE (in forearm)
Motor: Flexor carpi ulnaris
Flexor digitorum profundus [digits 4,5]

MEDIAL AND LATERAL CORDS

Median(C(5)6-T1): runs between 2 heads of PT[^], through ligament of Struthers ${ }^{[\star]}$ and lacertus fibrosus [$\left.{ }^{\star}\right]$, under FDS $\left[{ }^{\star}\right]$ into carpal tunnel $\left[{ }^{*}\right]$ (Martin Gruber formation: ulnar motor branches run with median nerve then branch to ulnar nerve distally). In wrist, median divides to Motor branch and palmar cutaneous (runs between FCR/PL): at risk in CTS release
3.

Sensory:	NONE (in forearm)
Motor:	ANTERIOR COMPARTMENT OF FOREARM Superficial Flexors Pronator Teres [PT]Flexor Carpi Radialis [FCR]Palmaris longus [PL]Flexor digitorum superficialis[FDS][sometimes considered a "middle" flexor]
	Deep Flexors Anterior Interosseous N. (AIN) AIN compressed by PT in forearm, injuredin supracondylar fractures Flexor digitorum profundus [digits 2, 3] Flexor pollicis longus [FPL] Pronator Quadratus [PQ]
* Potential nerve compression site	

POSTERIOR CORD

Radial (C5-T1): Divides into 2 branches:
superficial radial (sensory) and 2. deep (motor)-which then pierces supinator and becomes PIN)

Sensory:	Posterior forearm: via Posterior CutaneousNerve of forearm
	MOBILE WAD(3): Radial Nerve (deep branch): runs around radius into posterior compartment, through radial tunnel [^] becomes PIN
	Superficial Extensors Brachioradialis [BR]Extensor carpi radialis longus [ECRL]Extensor carpi radialis brevis [ECRB]
	POSTERIOR COMPARTMENT: PIN-
	Posterior/nterosseous Nerve Multiple sites ofcompression: 1. fibrous tissue of radialhead, 2. leash of Henry, 3. Arcade ofFrohse, 4. distal supinator, 5. ECRB
	Superficial Extensors Extensor carpi ulnaris [ECU]Extensor digiti minimi [EDM]Extensor digitorum communis [EDC]
	Deep Extensors SupinatorAbductor pollicis longusExtensor pollicis longusExtensor pollicis brevisExtensor indicis proprius
* Potential nerve compression site	

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

ARTERIES


```
                                    Superficial
                                    Terminal branch of ulnar artery
Allen test
Occlude
both
1. radial
and ulnar
arteries
at wrist
Patient
should
2. squeeze
Hand perfusion ("pinking up")
several
times
Release
3. pressure
on one
artery
Repeat
4. releasing
other
artery
```

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Radiograph shows cartilage thinning at proximal interphalangeal joints, erosion of carpus and wrist joint, osteoporosis, and finger deformities

H P WORK-UP/FINDING

TREATMENT ARTHRITIS

OSTEOARTHRITIS/DEGENERATIVE JOINT DISEASE

"Wear tear":

- articular cartilage loss
- 1° or 2° (e.g. trauma.)
- Seen in SLAC wrist

Stenosing tenosynovitis of

- 1st dorsal compartment (APL/EPB)

Hx: Older, women, pain (worse with activity) PE : Swelling, spurs, joint space loss, sclerosis decreased ROM

DEQUERVAIN'S DISEASE

Hx: Often history of tennis or golf. Pain, swelling. PE: 1Finkelstein test

RHEUMATOID ARTHRITIS

Systemic inflammatory

- disorder affecting synovium, destroys joint
- Wrist common site
- Associated with
tenosynovitis CTS

Same patient after 14 years (right). Carpus, wrist joint, and ulnar head completely eroded

Rheumatoid Arthritis

DESCRIPTION	H P	WORK-UP/FINDING	TREATMENT	
ARTHRITIS				
OSTEOARTHRITIS/DEGENERATIVE JOINT DISEASE				
"Wear tear": - articular cartilage loss - 1° or 2° (e.g. trauma.) - Seen in SLAC wrist	Hx: Older, women, pain (worse with activity) PE: Swelling, decreased ROM	XR: OA findings: spurs, joint space loss, sclerosis	1.	NSAID, splint, steroid injection Arthrodesis (pain relief)
DEQUERVAIN'S DISEASE				
Stenosing tenosynovitis of - 1stdorsal compartment (APL/EPB)	Hx: Often history of tennis or golf. Pain, swelling. PE: 1Finkelstein test	XR: Possible calcified tendons Lab: Uric acid (rule out gout)	1.	Splint, NSAID, injection Surgical release
RHEUMATOID ARTHRITIS				
Systemic inflammatory - disorder affecting synovium, destroys joint - Wrist common site - Associated with tenosynovitis CTS	Hx: Pain, stiffness (worse In AM) PE: Swelling throughout joint. Decreased ROM, ulnar drift at MCPs.	XR: Hand series: joint destruction erosion Labs: RF, ANA, WBC, ESR, uric acid	1. 2. 3.	Medical management, splint joints Synovectomy (single joint) Tendon transfer or repair Arthrodesis or arthroplasty
INSTABILITY				
SLAC: SCAPHOLUNATE ADVANCED COLLAPSE				

Degenerative arthritis secondary to

- instability (SL ligament disruption or scaphoid fracture/injury)

Hx/PE:
XR: Radioscaphoid OA: (CL joint also involved, RL joint spared)

Scaphoid

1. excision, capitolunate fusion Proximal row
2. carpectomy or fusion

SCAPHOLUNATE DISSOCIATION: (static/dynamic)

SL/RCL ligament disrupted: lunate displaced dorsally

- [DISI: Dorsal

Intercalated Segment Instability]
LT ligament

- disrupted: lunate displaced volarly [VISI:Volar ISI]

Hx: Fall (extension supination wrist
injury).
Pain in
wrist.
PE:
1Watson's
test

XR: SL space .3mm 5 "Terry Thomas" sign. Closed fist: increases SL gap

Early: closed reduction, splint/cast. Repair ligament if full tear Late: STT fusion, carpectomy, or wrist fusion.

DESCRIPTION	H P	WORKUP/FINDING	TREATMENT
AIN (Anterior Interosseous Nerve) SYNDROME			
- AIN trapped under: 1. PT 2. FDS 3. FCR	Hx: No sensory findings	XR: Rule out other pathology	1. Conservative treatment
	PE: decreased thumb flexion, no "OK" sign (+ Kiloh-Nevinsign)		2. Surgical release if does not resolve
CARPAL TUNNEL SYNDROME (CTS)			
- Median nerve trapped in carpal tunnel	Hx : Repetitive motion, night pain, parathesias, clumbsy	XR: Rule out other pathology	1. Activity modification
- Most common nerve entrapment	PE: Weak thenar muscles, + Tinel Phalen tests	EMG/NCS: Localize the lesion	2. Cock-up splint, NSAID, steroid injection
- Associated with metabolic disease (DM, EtOH, pregnancy, thyroid disease)			3. Carpal tunnel release [avoid palmar branch]
PIN SYNDROME (Saturday Night Palsy)			
- PIN trapped by: 1. Supinator (proximal border most common) 2. Arcade of Frohse 3. Leash of Henry 4. Fibrous bands 5. ECRB	Hx: +/- pain	XR: Rule out other pathology	1. Observe. It may resolve
	PE: No sensory	EMG/NCS:	2. Surgical

	minn rys. vvist urup, decreased wrist digit extension	Localize the lesion	decompression if symptoms persist
	PRONATOR SYNDROME		

OTHER DISORDERS

DESCRIPTION	H P	WORKUP/FINDING	TREATMENT
GANGLION			
- Cyst with mucinous/joint fluid	Hx/PE: Round, large or small transilluminating mass, +/-pain	XR: Wrist series, no radiographic evidence of ganglion	1. Asymptomatic: reassurance
- Communicates with joint			2. Symptomatic: aspirate or surgically excise (with stalk or it will recur)
- Most common mass in wrist1. Dorsal (SL)2. Volar (ST)			
KIENBÖCK'S DISEASE			
- Osteonecrosis of lunate	Hx: Pain, swelling, stiffness	XR: Opacity of lunate	I. NSAID, splinting
- Wrist trauma or short ulna	PE: Grip strength may be reduced.	Bone scan/MRI: will confirm diagnosis	IIIIII. Joint leveling procedure/carpal fusion
- 4 stages: based on collapse			IV. Proximal row carpectomy or fusion

SURGICALAPPROACHES

USES	INTERNERVOUS PLANE	DANGERS	COMMENT
FOREARM: ANTERIOR APPROACH (HENRY)			
1. ORIF fractures	Distal1. Brachioradialis [Radial]2. FCR [Median]	1. PIN	1. Radial recurrent artery (Leash of Henry) vein need ligation.
2. Osteotomy	Proximal1. Brachioradialis [Radial]2. Pronator Teres [Median]	2. Superficial radial nerve	2. If not ligated, hemorrhage could result in Compartment syndrome and/or Volkmann's contracture
3. Biopsy bone tumors		3. Radial artery	
WRIST: DORSAL APPROACH			
1. Fusion	1. 3rd dorsal compartment [EPL]	Radial nerve (Superficial)	1. Incise to the extensor retinaculum. This leaves cutaneous nerves intact in the subcutaneous fat.
2. Stabilization	2. 4th dorsal compartment [EDC, EIP]		2. Neuroma can develop from cutting cutaneous nerves.
3. ORIF fractures			
4. Carpectomy			
WRIST: VOLAR APPROACH			
1. Carpal tunnel	Nonnlanos	1. Median nerve• Palmar cutaneous	1. Retract PL/FPL radially

2. ORIF volar 2. Palmar arch 2. Dissect TCL carefully to fracture avoid nerve damage.
3. Dislocated
lunate
4. Tendon
laceration

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

CHAPTER 5 - HAND

- TOPOGRAPHIC ANATOMY
- OSTEOLOGY OF THE HAND
- TRAUMA
- JOINTS
- OTHER STRUCTURES: FLEXOR TENDON SHEATH AND PULLEYS
- OTHER STRUCTURES: HAND SPACES
- OTHER STRUCTURES: FINGER
- FLEXOR TENDON INJURY ZONES
- MINOR PROCEDURES
- HISTORY
- PHYSICAL EXAM
- MUSCLES
- INTRINSIC MUSCLES
- NERVES
- ARTERIES
- DISORDERS: ARTHRITIS
- DISORDERS: LIGAMENT INJURIES
- DISORDERS: INFECTIONS
- DISORDERS: MASSES \& TUMORS
- SURGICALAPPROACHES

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

CHAPTER 5 - HAND

TOPOGRAPHIC ANATOMY

[^2]
OSTEOLOGY OF THE HAND

CHARACTERISTICS	OSSIFY		FUSE	COMMENT
METACARPALS				
- Triangular in cross section: gives 2 volar muscular attachment sites	Primary: Body	9 wks (fetal)	$\begin{aligned} & 18 \\ & \text { yrs } \end{aligned}$	- Named I-V (thumb to small finger)
- Thumb MC has saddle shaped base: increases it mobility	Epiphysis	2 yrs		- Only one epiphysis per bone in the head. In thumb MC it is in the base.
PHALANGES				
- Palmar surface is almost flat	Primary: Body	8 wks (fetal)	1418 years	- 3 phalanges in each digit except thumb
- Tubercles and ridges are sites for attachment.	Epiphysis	$2-3 \mathrm{yr}$		- Only one epiphysis per bone in base.
Nomenclature for digits: thumb, index finger, middle finger, ring finger, small finger				
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com				

[^3]
Metacarpal Fractures

In fractures of metacarpal neck, volar cortex often comminuted, resulting in marked instability after reduction, which often necessitates pinning

Fracture of Base of Metacarpals of Thumb

Type I (Bennett fracture). Intraarticular fracture Type I (Bennett fracture). Intraarticular fracture
with proximal and radial dislocation of 1st metacarpal. Triangular bone fragment sheared off

Type II (Rolando fracture), Intraarticular fracture with Y-shaped configuration

DESCRIPTION	EVALUATION	CLASSIFICATION	TREATMENT
METACARPAL FRACTURES			
- Common in adults - 5th MC most common (Boxer's fracture at neck) - 1 st MC base. Bennett Rolando fracture: displaced, intraarticular. - 4 th 5 th MC tolerate angulation; 2 nd 3 rd do not	HX: Trauma. Swelling, pain, deformity. PE: Swelling, tenderness, +/- rotational deformity, shortening. Decreased ROM. XR: PA, lateral, oblique	By location: - Head - Neck (most common) - Shaft (transverse, spiral, Oblique) - Base (Bennett, Rolando, "Baby Bennett "-base of 5th MC)	Nondisplaced: ulnar gutter splint 4 weeks, then ROM. Severely Angulated or shortened: percutaneous pins or ORIF Displaced or intraarticular: reduce then pin. Unstable: ORIF
COMPLICATIONS: Rotational deformity grip abnormalities (malunion)			
PHALANGEAL FRACTURES			
	HX: Trauma.	Descriptive/location: - Intra vs extraarticular -Displaced/undisplaced	Extraarticular Undisplaced: buddy tape and/or splint

- Childrenadults	Swelling, pain, deformity.	- Open/closed - Transverse/oblique - Base, shaft, neck, condyle	Displaced: reduce, splint Unstable: pin or ORIF
	PE: Swelling, tenderness, +/- rotational deformity, shortening. Decreased		
Distal phalanx most common (MF)			
- Early ROM	ROM, 2 pt iscrimination, important for good results		
- Articular surfaces do not Tollary refill. incongruity. Close follow up is critical for intraarticular fractures	XR: AP, lateral,		
			Spliqu
			MCP in flexion, IPs extended

COMPLICATIONS: Rotational deformity (malunion); Decreased motion; Degenerative Joint Disease (DJD)

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

JOINTS

JOINT	TYPE	LIGAMENTS	ATTACHMENTS	COMMENTS
CARPOMETACARPAL				
Thumb	Saddle	Capsule		Highly mobile; common site for arthritis
		Dorsal, palmar, radial CMC	Trapezium to metacarpals	
Finger	Gliding	Capsule		
		Dorsal palmar CMC	Carpal to metacarpal bones	Dorsal strongest
		Interosseous CMC		
METACARPOPHALANGEAL				
	Ellipsoid	Capsule	Metacarpal to proximal phalanx	
		2 collateral (radial and ulnar)	Metacarpal to proximal phalanx	Loose in extension, tight in flexion
				Cast in flexion or ligaments will shorten
				Thumb ulnar collateral: - stabilizes pinch - injury is Gamekeeper's
		Palmar [volar plate]	Metacarpal to proximal phalanx	
		Deep transverse metacarpal		
INTERPHALANGEAL				
	Hinge	Capsule		
		2 collateral	Adjacent phalanges	Obliquely oriented
		Palmar [volar	ant nhalonno	Dravante himarovtancinn

STRUCTURE	CHARACTERISTICS	COMMENT
Flexor tendon sheath	Fibroosseous tunnel, lined with tenosynovium	Pulleys (5 annular, 3 cruciate) are thickenings of sheath. A2, A4 most important mechanically. A1, 3, 5 cover joints; A1 common cause of triggering.
	Protect, lubricate, nourish tendons	
	In sheath: vinculae are vascular supply to tendons	
		Site of potential infection: Kanavel signs often present (see Disorders)
Intrinsic Apparatus	Sagittal bands	EDC attaches extends MCP
	Central Slip	EDC attaches extends PIP: injury can result in Boutonniere deformity
	Lateral bands	Lumbricals attach extend PIP
	Volar plate (transverse fibers)	FDS attaches flexes PIP
	Oblique retinacular ligaments	Interossei attach flex MCP
		EDC attaches extends DIP

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier
OTHER STRUCTURES: HAND SPACES

STRUCTURE	CHARACTERISTICS	COMMENT
HAND SPACES	Between flexor tendon and Adductor pollicis	Potential space: site of possible infection
Thenar	Between flexor sheath and metacarpal	Potential space: site of possible infection
Mid-palmar	Infection can track proximally	
Radial bursa	Proximal extension of FPL sheath	Communicates with SF, FDS, FDP flexor tendon sheath
Ulnar bursa sheath infection can track		
Copyright © 2008 Elsevier Inc. All rights reserved. -		

OTHER STRUCTURES: FINGER

STRUCTURE CHARACTERISTICS		COMMENT
FINGERTIP		
Nail	Cornified epithelium	If completely avulsed, replace to keep eponychium and matrix separated until nail can grow back.
Nail bed/Matrix	Germinal: to lunula, under eponychium	Where nail grows (1 mm a week), must be intact (repaired) for nail growth
	Sterile: distal to lunula	If injured, does not need repair to function
Pulp	Multiple septae, nerves, arteries	Felon is an infection of the pulp
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com		

FLEXOR TENDON INJURY ZONES

Flexor Zones of Hand

ZONE	BOUNDARIES	COMMENT
I	FDS insertion to distal tip	Injuries amenable to repair (e.g. Jersey finger)
II	Midpalm fibroosseous tunnel to FDS insertion	Called "No man's land" because high rate of complications. Careful PE is required for diagnosis, the injury may not be at skin laceration site . FDS FDP may both require repair. A2, A4 must be preserved.
		Repair in zones 3-5 should be immediate
III	Transverse Carpal ligament to fibro-osseous tunnel	Injuries often associated with Median nerve or arterial arch injuries. Explore and repair all.
IV	Transverse carpal ligament (carpal tunnel)	Uncommon site of injury. Repair usually requires carpal tunnel release and repair. Median nerve at risk.
V	Proximal to the TCL	Injuries require end-to-end repair
Thumb I	Thumb \mathbb{P} to distal tip	Similar to finger
Thumb II	Thumb CMC to IP	Similar to finger
Thumb III	Thenar eminence	Repair may require lengthening or graft procedure

MINOR PROCEDURES

STPPS

INJECTION OF THUMB CMC JOINT

1. Ask patient about allergies
2. Palpate thumb CMC joint on volar radial aspect
3. Prepare skin over CMC joint (iodine/antiseptic soap)
4. Anesthetize skin locally (quarter size spot)

Palpate base of thumb MC, pull axial distraction on thumb with slight flexion to open joint. Use 22 gauge or smaller needle, and insert into joint. Aspirate to ensure
5. needle is not in a vessel. Inject $2-3 \mathrm{ml}$ of $1: 1$ local (without epinephrine)/corticosterioid preparation into CMC joint. (The fluid should flow easily if needle is in joint)
6. Dress injection site

FLEXOR TENDON SHEATH BLOCK

1. Ask patient about allergies
2. Palpate the flexor tendon at the distal palmar crease.
3. Prepare skin over palm (iodine/antiseptic soap)

Insert 22 gauge needle into flexor tendon at the level of the distal palmar crease.
4. Withdraw needle so it is just outside tendon, but inside sheath. Inject $2-5 \mathrm{ml}$ of local anesthetic without epinephrine.
5. Dress injection site

DIGITAL BLOCK

1. Prepare skin over dorsal proximal finger web space (iodine/antiseptic soap) Insert 22 gauge needle between metacarpal heads on both sides of finger.
2. Aspirate to ensure needle is not in a vessel. Inject $2-5 \mathrm{ml}$ of local anesthetic without epinephrine. The dorsum of the proximal digit may also require anesthesia for adequate anesthesia.
3. Care should be taken not to inject too much fluid into the closed space of the proximal digit
4. Dress injection site

HISTORY

"Jersey Finger"

Caused by violent traction on flexed distal phalanx, as in catching on jersey of running football player

Mallet finger

Usually caused by direct blow on extended distal phalanx, as in baseball, volleyball

QUESTION	ANSWER	CLINICAL APPLICATION
1. HAND DOMINANCE	Right or left	Dominant hand injured more often
2. AGE	Young	Trauma, infection
	Middle age, elderly	Arthritis, nerve entrapments
3. PAIN		
a. Onset	Acute	Trauma, infection
	Chronic	Arthritis
b. Location	CMC (thumb)	Arthritis (OA) especially in women
	Volar (fingers)	Purulent tenosynovitis (1 Kanavel signs)
4. STIFFNESS	In AM, with "catching"	Trigger finger, rheumatoid arthritis
5. SWELLING	After trauma	Infection (e.g. purulent tenosynovitis, felon, paronychia)
	No trauma	Arthritides, gout, tendinitis
6. MASS		Ganglion, Dupuytren's contracture, giant cell tumor
7. TRAUMA	Fall, sports injury in dirty environment	Fracture, tendon avulsion
		Infection
8. ACTIVITY	Sports, mechanic	Trauma (e.g. fracture, dislocation, tendon rupture)
9. NEUROLOGIC SYMPTOMS	Pain, numbness, tingling	Nerve entrapment (e.g. carpal tunnel), thoracic outlet syndrome, radiculopathy
	Mranknoce	Nerve entrapment (usually in wrist or more

	vveanicoo	proximal)
10. HISTORY OF ARTHRITIDES	Multiple joints involved	Rheumatoid arthritis, Reiter syndrome, etc.
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com		

Flexion contracture of 4 th and 5 th fingers (most common). Dimpling and puckering of skin. Palpable fascial nodules near flexion crease of palm at base of involved fingers with cordlike formations extending to proximal palm

Rheumatoid Arthritis

Boutonniere deformity of index finger with swan-neck deformity of other fingers

Purulent Tenosynovitis. Four cardinal signs of Kanavel

Osteoarthritis

Heberden's nodes seen in index and middle finger distal interphalangeal joints. Bouchard's nodes seen in proximal interphlangeal joints of the ring and small finger.

EXAMINATION	TECHNIQUE	CLINICAL APPLICATION
INSPECTION		
Gross deformity	Ulnar drift or swan neck	Rheumatoid arthritis
	Rotational or angular deformity	Fracture
Finger position	Flexion	Dupuytren contracture, purulent tenosynovitis
Skin, hair, nail changes	Cool, hairless, spoon nails, etc.	Neurovascular disorders: Raynaud's, diabetes, nerve injury
Swelling	DIPs	Nodes from osteoarthritis: Heberden's (at DIPs: \#1), Bouchard's (at PIPs)
	PIPs	
	MCP's	Rheumatoid arthritis
	Fusiform shape finger	Purulent tenosynovitis
Muscle wasting	Thenar eminence	Median nerve injury, CTS, C8/T1 pathology, CMC arthritis
	Hypothenar eminence or intrinsics	Ulnar nerve injury

Infections of the fingers

EXAMINATION	TECHNIQUE	CLINICAL APPLICATION
PALPATION		
Skin	Warm, red	Infection
	Cool, dry	Neurovascular compromise
Metacarpals	Each along its length	Tenderness may indicate fracture
Phalanges finger joints	Each separately	Tenderness: fracture, arthritis; Swelling: arthritis
Soft tissues	Thenar hypothenar eminences	Wasting indicates median ulnar nerve injury respectively
	Palm (palmar fascia)	Nodules: Dupuytren's contracture; Snapping with finger extension: Trigger finger
	Flexor tendons: along volar finger	Tenderness suggests purulent tenosynovitis
	Sides of finger	Giant cell tumors
	All aspects of finger tip	Tenderness: paronychia or felon
RANGE OF MOTION		
Finger: MCP joint	Flex 90°, extend 0°, Add/abd 0-20 ${ }^{\circ}$	Decreased flexion if casted in extension (collateral ligaments shorten)
PIP joint	Flex 110°, extend 0°	Hyperextension leads to swan-neck deformity
DIP joint	Flex 80°, extend 10°	All fingers should point to scaphoid at full flexion
Thumb: CMC joint	Radial abduction: Flex 50°, extend 50°	Motion is in plane of palm
	Palmar abduction: Abduct 70°, adduct 0°	Motion is perpendicular to plane of the palm
MCP joint	In plane of palm: Flex 50°, extend 0°	
IP joint	In plane of palm: Flex 90°, extend 10°	
Opposition	Touch thumb to small fingertip	Motion is mostly at CMC joint

EXAMINATION	TECHNIQUE	CLINICAL APPLICATION
NEUROVASCULAR		
Sensory	Light touch pinprick, 2 point	
Radial Nerve (C6)	Dorsal thumb web space	Deficit indicates corresponding nerve/root lesion
Median Nerve (C6-7)	Radial border middle finger	Deficit indicates corresponding nerve/root lesion
Ulnar Nerve (C8)	Ulinar border small finger	Deficit indicates corresponding nerve/root lesion
Motor		Number in parenthesis indicates compartment
Radial nerve/PIN (C7)	Finger extension	Weakness 5 EDC(4), EIP(4), EDM(5) or nerve lesion
	Thumb abduction extension	Weakness 5 APL(1) / EPL(3) or nerve/root lesion
Median nerve/AIN (C8)	PIP flexion	Weakness 5 FDS or corresponding nerve/root lesion
	DIP flexion	Weakness 5 FDP (1/2 of muscle) or nerve lesion
	Thumb IP flexion	Weakness 5 FPL or corresponding nerve/root lesion
Motor Recurrent Branch	"OK" sign	Weakness 5 APB, OP, 1/2 FPB or nerve lesion; (CTS)
	MCP flexion (index/middle fingers)	Weakness 5 IF, MF lumbricals or c nerve/root lesion
Ulnar nerve (Deep branch) (T1)	Finger cross (abduct/adduct)	Weakness 5 Dorsal/Volar interosseous or nerve lesion
	Small finger abduction	Weakness 5 FDM, ODM, ADM or nerve/root lesion
	MCP flexion (ring/small fingers)	Weakness 5 RF, SF lumbricals or nerve/root lesion
Reflex: Hoffmann	Tap a finger distal phalanx	Only pathologic (1 if different phalanx flexes): UMN syndrome
		Tests ulnar and radial artery patency
Pulses/capillary refill	Allen's test	
	Doppler: arches, digital pulses	

SPECIAL TESTS

Profundus	extension, flex DIP only	Inability to flex DIP alone indicates FDP pathology
Sublimis	Extend all fingers, flex a single finger at PIP	Inability to flex PIP of isolated finger indicates FDS pathology
Froment's sign	Hold paper with thumb index finger, pull paper	Thumb PIP flexion is positive, suggest Adductor Pollicis or Ulnar nerve palsy
CMC grind	Axial compress rotate CMC joint	Pain indicates arthritis at CMC and/or MCP joints of thumb
Finger instability	Stabilize proximal joint, apply varus valgus stress	Laxity indicates collateral ligament damage
Thumb instability	Stabilize MCP, apply valgus stress	Laxity indicates ulnar collateral ligament strain (Gamekeeper's thumb)
Murphy sign	Make fist, observe height of MCP's	If 3 rd MC (normally elevated) is flat with 2 nd 4 th $M C$, suggests lunate dislocation
Bunnel-Littler	Extend MCP, passively flex PIP	Tight or inability to flex PIP, improved with MCP flexion indicates tight intrinsic muscles

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright@2001 Saunders, An Imprint of Elsevier

MUSCLES

Anterior (palmar) view

MUSCLE	ORIGIN	INSERTION	NERVE	ACTION	COMMENT
THENAR COMPARTMENT					
Abductor pollicis brevis [APB]	Scaphoid, trapezium	Lateral proximal phalanx of thumb	Median	Thumb abduction	Palpable in lateral thenar eminence
Flexor pollicis brevis [FPB]	Trapezium	Base of proximal phalanx of thumb	Median	Thumb MCP flexion	Palpable in medial thenar eminence
Opponens pollicis	Trapezium	Lateral thumb MC	Median	Oppose thumb, rotate medially	Opposition is most important action
ADDUCTOR COMPARTMENT					
Adductor pollicis	1. Capitate, 2 nd 3 rd MC	Base of proximal phalanx of thumb	Ulnar	Thumb adduction	Radial artery between its two heads
	$\text { 2. } 3 \text { rd }$ Metacarpal				
HYPOTHENAR COMPARTMENT					
Palmaris brevis [PB]	Transverse carpal ligament [TCL]	Skin on medial palm	Ulnar	Wrinkles skin	Protects ulnar nerve
Abductor digiti minimi [ADM]	Pisiform	Base of proximal phalanx of SF	Ulnar	SF abduction	Palpable laterally
Flexor digiti minimi brevis [FDMB]	Hamate, TCL	Base of proximal phalanx of SF	Ulnar	SF MCP flexion	Palpable medially
				\bigcirc	Sonntanthar

Gppuse or, עeep to vuルו rotate

$\left.$| MUSCLE | ORIGIN | INSERTION | NERVE | ACTION | COMMENT |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Lumbricals 1
 2 | FDP
 tendons
 (lateral 2) | Lateral bands | Median | Extend
 PIP, flex
 MCP | Only muscles in body
 to insert on their own
 antagonist. |
| Lumbricals 3
 4 | FDP
 tendons
 (medial 3) | Lateral bands | Ulnar | Extend
 PIP, flex
 MCP | |
| Interosseous:
 Dorsal [DIO] | Adjacent
 metacarpals | Proximal phalanx
 extensor
 expansion | Ulnar | Digit
 abduction | DAB: Dorsal ABduct |
| Interosseous:
 Volar [VIO] | Adjacent
 metacarpals | Proximal phalanx | extensor
 expansion | Ulnar | Digit
 adduction | | PAD: Palmar Adduct |
| :--- |
| (volar 5 palmar) | \right\rvert\,

[^4]NERVES

INFRACLAVICULAR MEDIAL CORD

1. Ulnar (C(7)8-T1): through Guyon's canal, past hook of hamate

Sensory: Medial palm 1 1/2 digits via: palmar, palmar digital branches
Medial dorsal hand $11 / 2$ digits via: dorsal, dorsal digital, proper digital branches

Nerve divides at hypothenar eminence
Motor: Superficial Branch @[lateral to pisiform]
Palmaris brevis
Deep (Motor) Branch [around hook of hamate]
Adductor pollicis
THENAR MUSCLES
Flexor pollicis brevis [FPB] [with median]
HYPOTHENAR MUSCLES
Abductor digiti minimi [ADM]
Flexor digiti minimi brevis[FDMB]
Opponens digiti minimi [ODM]
INTRINSIC MUSCLES
Dorsal interossei [DIO] [abduct DAB]
Volar interossei [VIO] [adduct PAD]
Lumbricals [medial two $(3,4)$]

INFRACLAVICULAR	
MEDIAL AND LATERAL CORDS	
2. Median (C(5)6-T1): runs through carpal tunnel, then cutaneous branches off at (risk in Carpal Tunnel release)	
Sensory:	Palmar Cutaneous Branch
	Dorsal distal phalanges of $31 / 2$ digits: via proper palmar digital branches
	Volar wrist capsule
	Volar $31 / 2$ digits and lateral palm: via palmar palmar digital branches (multiple variations of thumb sensory innervation)
Motor:	Motor Recurrent (Thenar motor) Branch: Usually branches off median before carpal tunnel
	THENAR
	Abductor pollicis brevis [APB]
	Opponens pollicis
	Flexor pollicis brevis [FPB]
	(Joint innervation with ulnar nerve)//
	INTRINSIC
	Lumbricals [lateral two (1,2)]
POSTERIOR CORD	
3. Radial (C5-T1):	
Sensory:	Dorsal 3 1/2 digits and hand: via superficial branch (dorsal digit branches)
	Dorsal wrist capsule

Motor: NONE (in hand)

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

\left.| COURSE | BRANCHES | COMMENT |
| :--- | :--- | :--- |
| | DEEP PALMAR ARCH | |$\right]$

DESCRIPTION	HISTORY/PHYSICAL EXAM	WORKUP/FINDINGS	TREATMENT
ARTHRITIS: OSTEOARTHRITIS/DEGENERATIVE JOINT DISEASE (DJD)			
- Wear and tear arthritis	Hx: Older, women, pain worsewith activity	XR: OA findings:osteophytes, joint spaceloss, sclerosis,subchondral cysts	1. NSAID, splint, steroid injection
- Loss of articular cartilage	PE: + IP (DIP and/or PIP)nodes, + CMC grind test		2. DIP: arthrodesis, CMC/PIP: arthroplasty
- DIP \#1 [Heberden's nodes] CMC, IP \#2 [Bouchard's nodes]			
ARTHRITIS: RHEUMATOID			
- Systemic			I. Medical management
inflammatorydisease affecting synovium:destroys joints. MCP \#1	Hx: Painful, stiff (worse in AM)	XR: Hand series: joint destruction	splinting
- Has 4 stages	PE: Multiple joint swelling. deformities: ulnar drift (MCP)swan neck, boutonniere	Labs: RF, ANA, WBC, ESR, uric acid	II. Synovectomy (single joint)
- Associated with tenosynovitis,Carpal Tunnel Syndrome			III/V. Tendon transfer orrepair, arthrodesis,arthroplasty

FLEXOR TENOSYNOVITIS: TRIGGER FINGERTHUMB

- Nodule on tendon

Hv. Ano. 101 tandar
catcheson pulley (A1 most common) nodule

PE: Pain. Locking with flexion extension

- Also seen in
 splint)

2. A1 release [must spare A2]

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

DISORDERS: LIGAMENT INJURIES

Gamekeeper's Thumb
 distal phalanx or may avulse small or large bone fragment.

DESCRIPTION	HISTORY/PHYSICAL EXAM	WORKUP/FINDINGS	TREATMENT
CENTRAL SLIP INJURY: BOUTONNIERE DEFORMITY			
- Extensor tendon (central slip) at PIP ruptures, lateral bands slip volar and flex PIP.	Hx: Hand trauma	XR: Hand series: normal	1. Splint PIP in extension, DIP free
	PE: PIP flexed, no active extension, DIP extended		2. Reconstruct central slip and bands
- Associated with RA			3. Severe: fusion or arthroplasty
FLEXOR TENDON INJURY: JERSEY FINGER			
- Flexor tendon avulses from forceful extension	Hx: Extension injury, 1/2 pain.	XR: Rule out fracture (1/2 avulsion fracture)	1. Primary repair
- In football; RF\#1; FDPFDS	PE: FDS: 1 sublimus test FDP: 1 profundus test		2. Older patient: DIP fusion
MALLET FINGER			
- Extensor tendon rupture atdistal phalanx	Hx: Minor trauma	XR: 1/2 avulsion fracture	1. CONSTANT splint (DIP only) for 8 weeks
	PE: Cannot extend DIP, minimal pain swelling		
- FDP unopposed so DIP flexes			2. Repair if large bony avulsion fracture
SWAN NECK DEFORMITY			
- FDS rupture/volar plate injury	Hx: Trauma, RA, spastic	XR: Hand series	1. Early: splint
- Lateral bands subluxes dorsally, PIP hyperextends DIP flovoe	PE: PIP yperextended, DIP flovad		2. Late: surgical repair (individualize

- Ulnar collateral ligament torn	Hx: Trauma. Pain swelling.	XR: 1/2 avulsion fracture.	1. Incomplete: splint 2-4 weeks
- Mechanism: forceful radial	PE: Ulnar thumb unstable with radial extension/abduction	Stress view shows injury	2. Complete: surgical repair (treat Stener lesion)
- Often in ski pole injury			

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

DESCRIPTION	HISTORY/PHYSICAL EXAM	WORKUP/FINDINGS	TREATMENT
BITES: HUMAN/ANIMAL			
- Usually dominant hand	Hx: Laceration or puncture, dorsal MCP most common location	XR: Rule out fracture	1. Thorough ID, Td if necessary
- Classic mechanism: fist fight		Labs: Aerobic anaerobic cultures, WBC	2. V antibioticsAnimal: Unasyn Human: Augmentin
- Human: poly bacterial including Eikenella corrodens	PE: Red, swollen, 1/2 drainage, streaking. Decreased extension if tendon torn	[Contact health officials if animal possibly rabid]	
			3. Do not close wound, dress appropriately
- Animal: Pasteurella multocida			
DEEP SPACE INFECTION			
- From palm puncture or spread from finger ($+/-$ Horseshoe)	Hx/PE: Erythema, fluctuance, and tenderness	XR: Usually normal	Dorsal volar ID and V antibiotics
FELON			
- Deep infection or abscess in pulp	Hx/PE: Erythematous, swollen, and painful.	XR: Usually normal	1. ID, release septae
			2. V antibiotics
- Staph Aureus \#1 organism			
PARONYCHIAEPONYCHIA			
- Nail bed infection (most common finger infection)	Hx/PE: Red, painful, swollen, often purulent drainage	XR: Usually normal	1. Soaks and oral antibiotics
			2. ID with nail removal if necessary
- Staph Aureus \#1			

organism			
PURULENT TENOSYNOVITIS			
- Infection of flexor tendon sheath	Hx : Puncture wound	XR: Possible foreign body or subcutaneous air	1. Mild (early): IV antibiotics, reevaluate within 24 hours
- Usually from puncture wound	PE: KANAVEL SIGNS: 1. Flexed position, 2. Pain on passive extension, 3. Fusiform swelling, 4. Tender flexor sheath		2. Most: ID (1/2 drain) and IV antibiotics
- May extend into palm and develop "horseshoe" infection			No treatment results in adhesions necrosis
SPOROTRICHOSIS			
- Lymphatic infection (from roses)	Hx/PE: Discoloration or rash	XR: None	Potassium iodine solution
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com			

Deep Space Infections

DESCRIPTION	HISTORY/PHYSICAL EXAM	WORKUP/FINDINGS	TREATMENT
DUPUYTREN'S DISEASE			
- Proliferation of fascia (long bands)	Hx: Male, 401 years old	XR: None needed	1. No proven conservative treatment
- Northern European descent	PE: nodule, non-tender, flexed digit (RF\#1, SF\#2)		
- Associated with DM, epilepsy			2. Fasciotomy
ENCHONDROMA			
- \#1 Primary bone tumor	Hx : Pain after pathologic fracture	XR: Lytic lesion	Curettage and bone graft
- Usually proximal phalanx			
EPIDERMAL INCLUSION CYST			
- Epidermal cells embedded deep into tissue	Hx: Trauma or puncture	XR: Normal	Excision (get all epidermal cells or it will recur)
	PE: Painless mass, usually on digits, no transillumination		
GANGLION RETINACULAR CYST			
- Cyst (arises from joint or tendon) with mucinous joint fluid	Hx: Young patient	XR: No osteophyte in corresponding area	Aspiration of cyst if symptomatic. (may recur)
	PE: Visible, firm mass (volar MCP flexor tendon \#1 site).		
- Most common mass in hand			
GIANT CELL TUMOR (FIBROXANTHOMA)			
- Originates from tendon sheath	Hx/PE: Firm, painless mass, usually volar finger (IF,MF)	XR: Normal	Excise, they do recur
- 2nd most common hand mass			

MALIGNANT TUMORS

- \#1 Primary: squamous cell	Hx/PE: Mass, usually on dorsum of hand	XR: Normal	Excise
- \#1 Metastatic: lung	MUCOUS CYST		

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

SURGICALAPPROACHES

USES	INTERNERVOUSPLANE DANGERS		COMMENT
FINGER: VOLAR APPROACH			
1. Flexor tendons (repair/explore)	No planes	1. Digital artery	1. Make a "zig-zag" incision with angles of 90°
2. Digital nerve		2. Digital nerve	
3. Soft tissue releases			2. Neurovascular bundle is lateral to the tendon sheath
4. Infection drainage			
FINGER: MID-LATERAL APPROACH			
Phalangeal fractures	No planes	1. Digital nerve	Soft tissues are thin, capsule can be incised if care is not taken.
		2. Digital artery	
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com			

CHAPTER 6 - PELVIS

- TOPOGRAPHIC ANATOMY
- OSTEOLOGY
- LANDMARKS AND OTHER STRUCTURES
- TRAUMA
- JOINTS
- HISTORY AND PHYSICAL EXAM
- PHYSICAL EXAM OF THE PELVIS
- PHYSICAL EXAM
- MUSCLES: ORIGINS AND INSERTIONS
- ANTERIOR MUSCLES (also see muscles of the thigh/hip)
- GLUTEAL MUSCLES (also see muscles of the thigh/hip)
- NERVES
- ARTERIES

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

CHAPTER 6 - PELVIS

TOPOGRAPHIC ANATOMY

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

OStEOLOGY

CHARACTERISTICS	OSSIFY		FUSE	COMMENT
INNOMINATE: COXAL BONE				
- One bone: started as 3 , connected by triradiate cartilage at acetabulum llium: body ala Ischium: body ramus Pubis: body 2 rami	Primary (one in each body)	$\begin{aligned} & 2- \\ & 6 \\ & \text { mo } \end{aligned}$	to acetabulum 15 yrs	- lliac wing and superior pubic ramus are "weak spots"
				- ASIS: avulsion fracture can result from sartorius
	Secondary liac crest Acetabulum Ischial tuberosity AllS Pubis	$\begin{aligned} & 15 \\ & \text { yrs } \end{aligned}$	$\begin{aligned} & \text { All fuse } 20 \\ & \text { yrs } \end{aligned}$	- Alls: avulsion fracture can result from rectus femoris
- Two innominate per pelvis (LR)				- lliac crest ossification used to determine skeletal maturity (Risser stage)

- Acetabulum: anteverted and oblique
- lliac crest
orientation (approx. 45°) contusion referred to as "hip pointer"
SACRUM
See spine chapter

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier
LANDMARKS AND OTHER STRUCTURES

STRUCTURE	$\begin{aligned} & \text { ATTACHMENTS/ } \\ & \text { RELATED } \\ & \text { STRUCTURES } \end{aligned}$	COMMENT
ASIS	Sartorius Inguinal ligament	- LFCN crosses the ASIS can be compressed there (Meralgia paresthetica)
	Transverse internal oblique abdominal muscles	- Sartorius can avulse from it (avulsion fracture)
Alls	Rectus femoris Tensor fascia lata lliofemoral ligament (hip capsule)	- Rectus femoris can avulse from it (avulsion fracture)
PSIS	Posterior sacroiliac ligaments	- Excellent bone graft site
	Marked by skin dimple	
Arcuate line	Pectineus muscle	- Strong, weight bearing region
Gluteal lines	3 lines: anterior, inferior, posterior	- Separate origins of gluteal muscles
Greater trochanter	SEE ORIGINS/INSERTIONS	- Tender with trochanteric bursitis
Lesser trochanter	lliacus Psoas muscles	
Ischial tuberosity	SEE ORIGINS/INSERTIONS Sacrotuberous ligaments	- Excessive friction can cause bursitis (Weaver's bottom)
Ischial spine	Coccygeus Levator ani attach Sacrospinous ligaments	
Anterior (iliopubic) column of acetabulum	Consists of: 1. Pubic ramus 2. Anterior acetabulum 3. Anterior iliac wing	- Involved in several different fracture patterns
Posterior (ilioischial) column of acetabulum	Consists of: 1. Ischial tuberosity 2. Posterior acetabulum 3. Sciatic notch	- Involved in several different fracture patterns
Lesser sciatic foramen	Short external rotators exit: Obturator externus Obturator internus	
	Structures that exit: 1. Superior gluteal nerve 2. Superior gluteal artery 3. Piriformis muscle 4. Pudendal nerve 5. Inferior pudendal artery	- Piriformis muscle is the reference point
Greater sciatic foramen	6. Nerve to the Obturator internus 7. Posterior	- Superior Gluteal nerve and artery exit superior to the piriformis - POP'S IQ is a mnemonic for the

TRAUMA

Anteroposterior Compression Type III (APC-III)

Classification of Pelvic Fractures (Young and Burgess)

2: Minor trauma (e.g. fall on osteopenic bone): stable single
ramus
fracture
-
Mechanism
3: Stable
avulsion
fracture -
ASIS
(Sartorius) -
AllS (Rectus
femoris) -
Ischium
(hamstring)
II. Kamı fracture, posterior SI ligment fractures: disrupted, external but stable fixation with

III. LC II, with

 contralateral APC III ("windswept")- Vertical shear: anterior posterior pelvic injury (displacement): vertically unstable.

COMPLICATIONS: Associated injuries (especially with APC III): 1. GI, 2. GU, 3.
Vascular/hemorrhage, 4. Neurologic; Prolonged hospital stay with associated risks (infection, DVT, etc.); Residual deformity and/or pain (lower back or SI); Leg length discrepancy

I. Fracture of posterior wall. Repair with plate and lag screws

II. Fracture of posterior column. Repair with plate and lag screw

III. Wedge fracture of anterior wall. Repair with lag screws

IV. Fracture of anterior column. Repair with plate and long screws

V. Transverse fracture. Repair with plate and lag screw

DESCRIPTION	EVALUATION	CLASSIFICATION	TREATMENT
ACETABULAR FRACTURE			
- Uncommon, younger	HX: Trauma (e.g. dashboard injury). Pain, deformity.	Judet/Letournel: I. Posterior wall II. Posterior column	
		III. Anterior wall	Traction on affected side
- High energy or violent injury; femoral head is forced into acetabulum	PE: LE shortened, rotated. Usually neurovascularly intact distally.	IV. Anterior column V. Transverse VI. Posterior	Nondisplaced, congruent joint, Displaced,
- Dislocation of hip is often associated - Also GI, GU,	XR: AP. Internal external obliques (Judet views): many possible fracture sites	column wall VII. Transverse post. wall	dislocation, unstable fx: ORIF XRT (600 rads)
vascular associated injuries.	CT: shows fracture pattern and loose fragments	VIII. T-type IX. Anterior column posterior emitransverse	prophylaxis for heterotopic bone.
		X. Both columns	

COMPLICATIONS: Need for Total Hip Arthroplasty; Nerve injury (sciatic);
Heterotopic bone formation; Osteonecrosis steoarthritis

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed

Copyright © 2001 Saunders, An Imprint of Elsevier
JOINTS

LIGAMENTS	ATTACHMENTS	COMMENTS
	SACROILIAC (GLIDING)	

LIGAMENTS	ATTACHMENTS	COMMENTS
SYMPHYSIS PUBIS		
Superior pubic ligament	Both pubic bones superiorly	There is a fibrocartilage disc between the two hemipelvi
Arcuate pubic ligament	Both pubic bones inferiorly	
OTHER LIGAMENTS		
Sacrospinous	Anterior sacrum to ischial spine	Divides greater lesser sciatic foramina; provides rotational stability
Sacrotuberous	Anterior sacrum to ischial tuberosity	Inferior border of lesser sciatic foramina; provides vertical stability
lliolumbar	L5 transverse process to crest	Can result in avulsion fracture
Lumbosacral	L5 transverse process to ala	Vertical stability

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier

HISTORYAND PHYSICAL EXAM

QUESTION	ANSWER	CLINICAL APPLICATION
1. AGE	Young Middle age, elderly	Ankylosing Spondylitis (1HLA-b27) Decreased mobility
2. PAIN a. Onset b. Character c. Occurrence	Acute Chronic Deep, non- specific Radiating In out of bed, on stairs Adducting legs	Trauma: fracture, sprain Systemic inflammatory disorder Sacroiliac etiology To thigh or buttock on ipsilateral side: SI joint injury Sacroiliac etiology Symphysis pubis etiology
3. PMHx	Pregnancy	Laxity of ligaments of SI joint causes pain
4. TRAUMA	Fall on buttock, twist injury	Sacroiliac joint injury
	High velocity: MVA, fall	Fracture
5. ACTIVITYMORK	Twisting, stand on one leg	Sacroiliac etiology
6. NEUROLOGIC SYMPTOMS	Pain, numbness, tingling	Spine etiology, sacroiliac etiology
7. HISTORY of ARTHRITIDES	Multiple joints involved	Sl involvement of RA, Reiter's syndrome, Ankylosing Spondylitis, etc.
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com		

With palpatation

Ischial bursitis

 (deep pain and tenderness over ischial tuberosity)

$\begin{gathered} \text { EXAM/ } \\ \text { OBSERVATION } \end{gathered}$	TECHNIQUE	CLINICAL APPLICATION
INSPECTION		
Skin	Discoloration, wounds	
ASIS's, lliac crests	Both level (same plane)	If on different plane: Leg length discrepancy, sacral torsion
Lumbar curvature	Increased lordosis	Flexion contracture
	Decreased lordosis	Paraspinal muscle spasm
PALPATION		
Bony structures	Standing: ASIS, Pubic lliac tubercles, PSIS	Unequal side to side 5pelvic obliquity: leg length discrepancy
	Lying: lliac crest, Ishial tuberosity	Mass: cluneal neuroma
Soft tissues	Inguinal ligament	Protruding mass: hernia
	Femoral pulse nodes	Diminished pulse: vascular injury; palpable nodes: infection
	Muscle groups	Each group should be symmetric bilaterally
RANGE OF MOTION		
Forward flexion	Standing: bend forward	PSIS's should elevate slightly (equally)
Extension	Standing: lean backward	PSIS's should depress (equally)
Hip flexion	Standing: knee to chest	PSIS should drop but will elevate in hypomobile SI joint
		Ischial tuberosity should move laterally, will elevate in hypomobile SI joint

EXAM/ OBSERVATION	TECHNIQUE	CLINICAL APPLICATION
NEUROVASCULAR		
Sensory		
lliohypogastric nerve (L1)	Suprapubic, lateral buttocks thigh	Deficit indicates corresponding nerve/root lesion
llioinguinal nerve (L1)	Inguinal region	Deficit indicates corresponding nerve/root lesion (e.g. abdominal muscle compression)
Genitofemoral nerve (L1-2)	Scrotum or mons	Deficit indicates corresponding nerve/root lesion
Lateral femoral cutaneous nerve (L2-3)	Lateral hip thigh	Deficit indicates corresponding nerve/root lesion (e.g. Meralgia paresthetica)
Pudental nerve (S2- 4)	Perineum	Deficit indicates corresponding nerve/root lesion
Motor		
Femoral (L2-4)	Hip flexion	Weakness 5 lliopsoas or corresponding nerve/root lesion
Inferior Gluteal nerve	External rotation	Weakness 5Gluteus maximus or nerve/root lesion
Nerve to Quadratus femoris	External rotation	Weakness 5Short rotators or corresponding nerve/root lesion
Nerve to Obturator internus		
Nerve to Piriformis		
Superior Gluteal nerve	Abduction	Weakness 5Gluteus medius/minimus, TFL or corresponding nerve/root lesion
Reflex	Bulbocavernosus	Finger in rectum, squeeze or pull penis (Foley), anal sphincter should contract
Pulses	Femoral pulse	
SPECIAL TESTS		
Strainhtlon	Supine: extend	Dain radiatinata I F. HND with radiculanath,

y	knee, flex hip	
SI stress	Press ASIS, iliac crest, sacrum	Pain in SI could be SI ligament injury
Trendelenburg sign	Standing: lift one leg (flex hip)	Flexed side: pelvis should elevate; if pelvis falls: Abductor or gluteus medius dysfunction
Patrick (FABER)	Flex, ABduct, ER hip, then abduct more	Positive if pain or LE will not continue to abduct below other leg: SI joint pathology
Meralgia	Pressure medial to ASIS	Reproduction to pain, burning, numbness: LFCN entrapment
Rectal Vaginal exam	Especially after trauma	Gross blood indicates trauma communicating with those organ systems

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

MUSCLES: ORIGINS AND INSERTIONS

PUBIC RAMI (ASPECT)	GREATER TROCHANTER	ISCHIAL TUBEROSITY	LINEAASPERA POSTERIOR FEMUR
Pectineus (pectineal line/superior)	Piriformis (anterior)	Inferior gemellus	Adductor magnus
Adductor magnus (inferior)	Obturator internus (anterior)	Quadratus femoris	Adductor longus
Adductor longus (anterior)	Superior gemellus	Semimembranosus	Adductor brevis
Adductor brevis (inferior)	Gluteus medius (posterior)	Semitendinosus	Biceps femoris
Gracilis (inferior)	Gluteus minimus (anterior)	Biceps femoris (LH)	Pectineus
Psoas minor (superior)	Adductor magnus	Gluteus maximus	
			Vastus lateralis

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier

ANTERIOR MUSCLES (also see muscles of the thigh/hip)

MUSCLE	ORIGIN	INSERTION	NERVE	ACTION	COMMENT
HIP FLEXORS					
ANTERIOR					
Psoas	T12-L5 vertebrae	Lesser trochanter	Femoral	Flexhip	Covers lumbar plexus
lliacus	lliac fossa	Lesser trochanter	Femoral	Flexhip	Covers anterior ilium
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com					

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.

Copyright © 2001 Saunders, An Imprint of Elsevier
GLUTEAL MUSCLES (also see muscles of the thigh/hip)

MUSCLE	ORIGIN	INSERTION	NERVE	ACTION	COMMENT
HIP ABDUCTORS					
Tensor fascia latae	lliac crest, ASIS	lliotibial band	Superior Gluteal	Abducts, flex, \mathbb{R} thigh	A plane in anterior approach to hip
HIP ABDUCTORS					
Gluteus medius	llium between anterior posterior gluteal lines	Greater trochanter	Superior Gluteal	Abduct (\mathbb{R}) thigh	Trendelenburg gait if muscle is out.
Gluteus minimus	llium between anterior interior gluteal lines	Anterior greater trochanter	Superior Gluteal	Abduct (IR) thigh	Works in conjunction with medius
HIP EXTERNAL ROTATORS					
Gluteus maximus	lium, dorsal sacrum	Gluteal tuberosity (femur), ITB	Inferior Gluteal	Extend, ER thigh	Must detach in post. approach to hip
Piriformis	Anterior sacrum	Superior greater trochanter	Piriformis	ER thigh	Used as landmark
Obturator externus	Ischiopubic rami, obturator membrane	Trochanteric fossa	Obturator	ER thigh	Muscle actually in medial thigh
Short Rotators					
Obturator internus	Ischiopubic rami, obturator membrane	Medial greater trochanter	N. to Obturator internus	ER, abduct thigh	Muscle makes a right turn
Superior gemellus	Ischial spine	Medial greater trochanter	N. to Obturator internus	ER thigh	Assists obturator internus
Inferior gemellus	Ischial tuberosity	Medial greater trochanter	N. to Quadratus femoris	ER thigh	Assists obturator internus
Quadratus femoris	Ischial tuberosity	Intertrochanteric crest	N. to Quadratus femoris	ER thigh	Runs with ascending branch of medial circumflex artery

NERVES

Motor: Coccygeus

POSTERIOR DIVISION
13. Superior Gluteal (L4-S1):

Sensory: NONE
Motor: Gluteus medius
Gluteus minimus
Tensor fascia lata
14. Inferior Gluteal (L5-S2):

Sensory: NONE
Motor: Gluteus maximus
15. Nerve to piriformis (S2):

Sensory: NONE
Motor: Piriformis
OTHER NERVES (non-plexus)
16. Cluneal nerves: branches of lumbar and sacral dorsal rami. Can be injured during bone grafts.

Sensory: Skin of gluteal region
Motor: NONE

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

COURSE	BRANCHES	COMMENT
	AORTA	
Along anterior vertebral bodies ALL	Common iliacs at L4 Lumbar arteries (4 sets)	
		Paired: posterior branch supplies cord, meninges paraspinal muscles
	Median sacral artery 5th Lumbar arteries (2)	Unpaired vessel

		buttocks
	Multiple visceral branches ["]	
	$\begin{aligned} & \text { POSTERIOR } \\ & \text { DIVISION } \end{aligned}$	
	Superior gluteal	Supplies muscles of the buttocks
	lliolumbar	Supplies iliopsoas and ilium
	Lateral sacral	Supplies sacral roots, meninges, muscles covering sacrum
EXTERNAL ILIAC		
Under inguinal ligament over the pubic rami, on the psoas muscle	Does not supply much in the pelvis	
	Deep circumflex iliac artery	
	Inferior epigastric artery	
	Femoral artery (under inguinal ligament)	At risk Total Hip Arthroplasty (THA)
* Other branches of the Internal iliac include: Umbilical, Vaginal/Inferior vesical, Uterine, Mddle rectal, Inferior pudendal		

CHAPTER 7 - THIGH/HIP

- TOPOGRAPHIC ANATOMY
- OSTEOLOGY
- TRAUMA
- JOINTS
- MINOR PROCEDURES
- HISTORY
- PHYSICAL EXAM
- MUSCLES: ORIGINS AND INSERTIONS
- MUSCLES: ANTERIOR
- MUSCLES: MEDIAL
- MUSCLES: POSTERIOR (HAMSTRINGS)
- THIGH MUSCLES: CROSS SECTIONS
- NERVES
- ARTERIES
- ARTERIES OF THE FEMORAL NECK
- DISORDERS
- TOTAL HIP ARTHROPLASTY
- TIPS ON TOTAL HIPS
- PEDIATRIC DISORDERS
- SURGICAL APPROACHES

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

CHAPTER 7 - THIGH/HIP

TOPOGRAPHIC ANATOMY

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

OStEOLOGY

CHARACTERISTICS	OSSIFY		FUSE	COMMENT
FEMUR				
. Long bone characteristics Proximally: head, neck, greater lesser trochanters Neck: bone				Blood supply Head neck: branches of the Medial Lateral circumflex artery (from profunda)
comprised of - tensile compressive groups	Primary (Shaft) Secondary	7-8	16- 18 years	Shaft: nutrient (from profunda)
Distally: 2 condyles	1. Distal physis	wks (fetal)	$\begin{aligned} & 19 \\ & \text { years } \end{aligned}$	Head neck vascularity
Lateral: more anterior proximal Medial:	2. Head 3. Greater trochanter 4. Lesser	$\begin{aligned} & \text { Birth } \\ & 1 \mathrm{yr} \\ & 4-5 \mathrm{yr} \\ & 10 \mathrm{yr} \end{aligned}$	18 years 16 years	tenuous: - increased risk of ischemia in fracture or dislocation.
larger, more posterior distal				Femoral neck weakens with - age: susceptable to

- anteversion:
$12-14^{\circ}$
- Neck/shaft
angle: 126°

Anatomic axis:

- along shaft of femur
Mechanical axis: femoral
- head to
intercondylar notch

Bone Architecture in Relation to Physical Stress

Wolff's law. Bony structures orient themselves in form and mass to best resist extrinsic forces (ie, form and mass follow function)

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

TRAUMA

Anteroposterior view. Dislocated femoral head lies posterior and superior to acetabulum. Femur adducted and internally rotated; hip flexed. Sciatic nerve may be stretched

Anteroposterior radiograph shows posterior dislocation

Allis maneuver. Patient supine on table, under anesthesia or sedation. Examiner applies firm distal
traction at Ilexed knee to pull head into acetabulum; slight rotatory motion may also help. Assistant fixes pelvis by pressing on anterior superior iliac spines

DESCRIPTION	EVALUATION	CLASSIFICATION	TREATMENT
HIP DISLOCATION			
High energy trauma (esp MVAdashboard injury or significant fall.) Orthopaedic emergency Multiple associated injuries +/- fractures, (e.g. femoral head neck) - Posterior most common (85\%)	HX: Trauma. Severe pain, Cannot move thigh/hip.	Posterior. Thompson: Simple, no I. posterior fragment	
		Simple, large II. posterior fragment	Early reduction
		III. posterior fragment	XR neurologic exan Posterior:
	Post: adducted, flexed, IR	IV. Acetabular fracture	l: Closed reduction abduction pillov
	Ant: abducted, flexed, ER.	v. Femoral head fracture	II-V: 1. Closed Reduction (ope
	Pain (esp. with motion),	Anterior. Epstein:	if irreducible)
	exam XR: AP pelvis, frog lateral	I. (A, B, C): Superior	ORIF fracture 2. or
	(Femoral head is different size) Also femur knee series	(A, B, C): Inferior	excise fragme
	CT: Rule out fracture or bony fragments	A: No associated fracture	Anterior: closed reduction, ORIF if
		II. B: Femoral head fracture	necessary.
		C: Acetabular fracture	

COMPLICATIONS: Osteonecrosis (AVN) reduced risk with early reduction; Sciatic nerve injury (posterior dislocations); Femoral artery nerve injury (anterior dislocations); Instability recurrence; Osteoarthritis; Heterotopic ossification

Femoral Neck Fracture

Type I. Impacted fracture

Type III. Partially displaced

Type II. Nondisplaced fracture

Type IV. Displaced fracture. Vertical fracture line generally suggests poorer prognosis

DESCRIPTION	EVALUATION	CLASSIFICATION	TREATMENT
FEMORAL NECK FRACTURE			
Mechanism:			
Fall by elderly 1. woman		Garden (4 types):	
most common;		Incomplete I. fracture;	Early reduction essential All fractures:
High velocity	HX: Fall. Pain, inability to bear weight or walk.	valgus impaction	Closed (open)
2. injury in young adults	PE: LE shortened, abducted, externally rotated. Pain with "rolling" of leg.	Complete II. fracture; nondisplaced	reduction then IF of fracture: Young: 3 parallel screws
- Intracapsular fractures	XR: AP pelvis (+/-IR), groin lateral	Complete fracture, III. Partial	Old: hemiarthroplasty
- Associated with osteoporosis	MR: If symptomatic with negative XR	displacement (varus)	(Stable fracture, type I, may heal without surgery,
Often caused by - medical condition (syncope, etc)		Complete IV. fracture, total displacement	ORIF because of displacement risk)

- complication rate (25\%)

COMPLICATIONS: Osteonecrosis (AVN) incidence increases with fracture type (displacement) +/- late segmental collapse; Nonunion; Hardware failure

Intertrochanteric Fracture of Femur

Fracture of Shaft Femur

DESCRIPTION	EVALUATION	CLASSIFICATION	TREATMENT
SUBTROCHANTERIC FRACTURE			
Fall by a more - elderly woman most common - Associated with osteoporosis Occurs along or below the intertrochanteric line - Extracapsular fractures - Stable vascularity Most heal well - with proper fixation	HX: Fall. Pain, inability to bear weight or walk PE: LE shortened, ER. Pain with "log rolling" of leg XR: AP pelvis (+/- IR), groin lateral MR: If symptomatic with negative XR	Evans (based on post-reduction stability) Type I. Stable Type II. Unstable	Nonoperative is very rarely indicated. Operative treatment with sliding compression hip screw and side plate. Early mobilization with partial weightbearing

COMPLICATIONS: Nonunion/Malunion; Hardware failure or loss of reduction; Infection. Mortality rate, first 6 months after fracture, is 15-25\%

SUBTROCHANTERIC FRACTURE
Mechanism:

1. Fall in elderly
Trauma
HX: Trauma
2. in young

Occurs below or fall. Pain, swelling Seinsheimer (5 types):
I. Non or minimally displaced

Nonoperative treatment: traction hip spica cast for 6-8 wks (not commonly

```
the lesser
Swelling,
III. Displaced: }3\mathrm{ parts
- trochanter (up to 5 cm below it).

Pathologic
- fractures seen here. tenderness +/shortening of LE

XR:AP
lateral
```

Decreased

- vascularity = tenuous healing

```

COMPLICATIONS: Nonunion/Malunion; Hardware failure or loss of reduction; Refracture with hardware removal


\section*{DESCRIPTION EVALUATION CLASSIFICATION TREATMENT}

Winquist/Hansen (4
types):
Stable
HX: Trauma.
Pain, swelling deformity
PE:
Deformity, +/open wound soft tissue injury; Check distal pulses

XR: AP lateral thigh, knee trauma series.
I. No/minimal comminution

Comminuted:
II. \(50 \%\) of cortices intact

Unstable
Comminuted:
III. \(50 \%\) of cortices intact
Complete
IV. comminution,
no intact
cortex
COMPLICATIONS: Neurovascular injury and/or hemorrhagic shock; Nonunion/Malunion; Hardware failure or loss of reduction; Knee injury (5\%)

Mechanism: direct blow
- Metaphysis or epiphysis Quadriceps or
- gastrocnemius often displace fragments

Restoration of articular surface is
- essential to regain normal knee mobility function

HX: Trauma. Cannot bear weight, pain, swelling.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{PE: Effusion, tenderness, do good neurovascular exam} & & +/- aspirate hemarthroses \\
\hline & \begin{tabular}{l}
Extraarticular \\
Supracondylar
\end{tabular} & Undisplaced/extraarticular: reduce, immobilize (less commonly used method) \\
\hline exam XR: Knee trauma series & Intraarticular Intercondylar: T or Y Condylar & Displaced/intraarticular: ORIF: plates and screws or intramedullary nails \\
\hline CT: Better defines fracture & & Early mobilization \\
\hline AGRAM: if pulseless & & \\
\hline
\end{tabular}
+/- aspirate hemarthroses
Undisplaced/extraarticular: reduce, immobilize (less commonly used method)
Displaced/intraarticular: ORIF: plates and screws or intramedullary nails

Early mobilization

COMPLICATIONS: Osteoarthritis and/or pain; Decreased range of motion; Malunion/nonunion; Instability

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier
JOINTS

\begin{tabular}{|c|c|c|}
\hline LIGAMENTS & ATTACHMENTS & COMMENTS \\
\hline \multicolumn{3}{|c|}{HIP JOINT (Spheroida/Ball and Socket type)} \\
\hline Transverse acetabular & Anteroinferior to posteroinferior acetabulum & Cups the acetabulum \\
\hline Labrum & Acetabular rim & Deepens stabilizes acetabulum \\
\hline JOINT CAPSULE & Acetabular rim to femoral neck & \\
\hline Pubofemoral (anterior/inferior) & Femoral neck to superior pubic ramus & Covers femoral NECK \\
\hline lisofemoral (anterior) (Y ligament of Bigelow) & AllS to intertrochanteric line & Strongest, most support \\
\hline Ishiofemoral (posterior) & Posterior rim to intertrochanteric crest & Posterior femoral neck only partially covered (weak) \\
\hline \multicolumn{3}{|l|}{Zona orbicularis (posterior)} \\
\hline Ligament of Teres & Fovea to cotyloid notch & Artery runs in ligament \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline HIP INJECTION OR ASPIRATION & STEPS \\
\hline
\end{tabular}
1. Ask patient about allergies
2. Place patient supine, palpate the greater trochanter.
3. Prepare skin over insertion site (iodine/antiseptic soap)
4. Anesthetize skin locally (quarter size spot)

ANTERIOR: Find the point of intersection between a vertical line below ASIS and horizontal line from Greater trochanter. Insert 20 gauge ( 3 inch/spinal needle) upward slightly medial direction at that point.

LATERAL: Insert a 20 gauge ( \(3 \mathrm{inch} /\) spinal needle) superior and medial to greater trochanter until it hits the bone (the needle should be within the capsule which extends down the femoral neck).
Inject (or aspirate) local or local/steroid preparation into joint. (The fluid should flow easily if needle is in joint)
6. Dress injection site

\section*{TROCHANTERIC BURSAINJECTION}
1. Ask patient about allergies
2. Place patient in lateral decubitus position, palpate the greater trochanter.
3. Prepare skin over lateral thigh (iodine/antiseptic soap)

Insert 20 gauge needle (at least 1 1/2inches) into thigh to the bone at the point of most tenderness. Withdraw needle \((1-2 \mathrm{~mm})\) so it is just off the bone and in the
4. bursa. Aspirate to ensure needle is not in a vessel.

Inject 10 ml of local or 4:1 local/corticosteroid preparation into bursa
5. Dress injection site

\section*{HISTORY}

\begin{tabular}{|c|c|c|}
\hline QUESTION & ANSWER & CLINICAL APPLICATION \\
\hline \multirow[t]{2}{*}{1. AGE} & Young & Trauma, developmental disorders \\
\hline & Middle age, elderly & Arthritis (inflammatory conditions), femoral neck fractures \\
\hline \begin{tabular}{l}
2. PAIN \\
a. Onset \\
b. Location \\
c. Occurrence
\end{tabular} & \begin{tabular}{l}
Acute \\
Chronic \\
Lateral hip or thigh \\
Buttocks/posterior thigh \\
Groin/medial thigh \\
Anterior thigh \\
Ambulation/motion \\
At night
\end{tabular} & \begin{tabular}{l}
Trauma, infection \\
Arthritis (inflammatory conditions) \\
Bursitis, LFCN entrapment, snapping hip \\
Consider spine etiology \\
Hip joint or acetabular etiology (less likely to be \\
from pelvis or spine) \\
Proximal femur \\
Hip joint etiology (i.e. not pelvis or spine) \\
Tumor, infection
\end{tabular} \\
\hline 3. SNAPPING & With ambulation & Snapping hip syndrome, loose bodies, arthritis, synovitis \\
\hline 4. ASSISTED AMBULATION & Cane, crutch, walker & Use (and frequency) indicates severity of pain condition \\
\hline 5. ACTIVITY TOLERANCE & Walk distance activity cessation & Less distance walked and fewer activities no longer performed = more severe \\
\hline 6. TRAUMA & Fall, MVA & Fracture, dislocation, bursitis \\
\hline 7. ACTIVITYNORK & Repetitive use & Femoral stress fracture \\
\hline 8. NEUROLOGIC SYMPTOMS & Pain, numbness, tingling & LFCN entrapment, spine etiology \\
\hline 9. HISTORY OF ARTHRITIDES & Multiple joints involved & Systemic inflammatory disease \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{EXAM/OBSERVATION TECHNIQUE} & CLINICAL APPLICATION \\
\hline \multicolumn{3}{|r|}{INSPECTION} \\
\hline Skin & Discoloration, wounds & Trauma \\
\hline & Gross deformity & Fracture, dislocation \\
\hline Gait & 60\%stance, 40\%swing & Normal gait: 20\% double stance (both feet on ground) \\
\hline Antalgic (painful) & Decreased stance phase & Knee, ankle, heel (spur), midfoot, toe pain \\
\hline Lurch (Trendelenburg) & Laterally (on WB side) & Gluteus medius weakness, hip disease (OA, AVN) \\
\hline Lurch & Posteriorly (hip extended) & Gluteus maximus weakness \\
\hline Steppage & More hip knee flexion & Foot drop, weak anterior leg muscles \\
\hline Flat foot & No push off & Hallux rigidus, gastrocnemius/soleus weakness \\
\hline Wide & Feet 4 inches apart & Neurologic/cerebellar disease \\
\hline Decreased step size & Less than previous normal & Pain, age, other pathology \\
\hline \multicolumn{3}{|r|}{PALPATION} \\
\hline Bony structures & Greater trochanter/bursa & Pain/palpable bursa: infection/bursitis, gluteus medius tendinitis \\
\hline Coft ticaine & Sciatic nerve (hip & Dain dien harniatian nirifarmic ensem \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|}
\hline PUBIC RAMI (ASPECT) & GREATER TROCHANTER & ISCHIAL TUBEROSITY & LINEAASPERA POSTERIOR FEMUR \\
\hline Pectineus (pectineal line/sup) & Piriformis (anterior) & Inferior gemellus & Adductor magnus \\
\hline Adductor magnus (inferior) & Obturator internus (anterior) & Quadratus femoris & Adductor longus \\
\hline Adductor longus (anterior) & Superior gemellus & Semimembranosus & Adductor brevis \\
\hline Adductor brevis (inferior) & Gluteus medius (posterior) & Semitendinosus & Biceps femoris \\
\hline Gracilis (inferior) & Gluteus minimus (anterior) & Biceps femoris (LH) & Pectineus \\
\hline Psoas minor (superior) & & Adductor magnus & Gluteus maximus \\
\hline & & & Vastus lateralis \\
\hline & & & Vastus medialis \\
\hline \multicolumn{4}{|l|}{Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com} \\
\hline
\end{tabular}

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier
MUSCLES: ANTERIOR

\(\left.\)\begin{tabular}{|l|l|l|l|l|l|}
\hline MUSCLE & ORIGIN & INSERTION & NERVE & ACTION & COMMENT \\
\hline \begin{tabular}{l} 
Articularis \\
genu
\end{tabular} & \begin{tabular}{l} 
Distal anterior \\
femoral shaft
\end{tabular} & \begin{tabular}{l} 
Synovial \\
capsule
\end{tabular} & Femoral \\
Capsule \\
superiorly in \\
extension
\end{tabular}\(\quad\)\begin{tabular}{l} 
May join with \\
vastus \\
intermedius
\end{tabular} \right\rvert\, \begin{tabular}{l} 
Sartorius \\
ASIS
\end{tabular}

MUSCLES: MEDIAL

\begin{tabular}{|c|c|c|c|c|c|}
\hline MUSCLE & ORIGIN & INSERTION & NERVE & ACTION & COMMENT \\
\hline Obturator externus & Ischiopubic rami, obturator membrane & Trochanteric fossa & Obturator & ER thigh & Tendon posterior to femoral neck \\
\hline \multicolumn{6}{|c|}{HIP ADDUCTORS} \\
\hline Adductor longus & Body of pubis (inferior) & Linea aspera (mid 1/3) & Obturator & Adducts thigh & Tendon can ossify \\
\hline Adductor brevis & Body and inferior pubic ramus & Pectineal line, upper linea aspera & Obturator & Adducts thigh & Deep to pectineus \\
\hline Adductor magnus & Ischiopubic ramus ischial tuberosity & Linea aspera/adductor tubercle & Obturator/ Sciatic & Adducts flex/ extend thigh & 2 portions: separate insertions innervation \\
\hline Gracilis & Body and inferior pubic ramus & Proximal medial tibia (Pes anserinus) & Obturator & Adducts (flex) thigh flex, \(\mathbb{R}\) leg & Used in ligament reconstruction (ACL) \\
\hline \multicolumn{6}{|l|}{HIP FLEXORS (also iliopsoas)} \\
\hline Pectineus & Pectineal line of pubis & Pectineal line of femur & Femoral & Flex and adduct thigh & Part of femoral triangle floor \\
\hline \multicolumn{6}{|l|}{Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com} \\
\hline
\end{tabular}


\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.}

Copyright © 2001 Saunders, An Imprint of Elsevier

MUSCLES: POSTERIOR (HAMSTRINGS)

\begin{tabular}{|c|c|c|c|c|c|}
\hline MUSCLE & ORIGIN & INSERTION & NERVE & ACTION & COMMENT \\
\hline Semitendinosus & Ischial tuberosity & Proximal medial tibia (Pes anserinus) & Sciatic (tibial) & Extend thigh, flex leg & Used in ligament reconstructions (ACL) \\
\hline Semimembranosus & Ischial tuberosity & Posterior medial tibial condyle & Sciatic (tibial) & Extend thigh, flex leg & A border in medial approach \\
\hline Biceps femoris: Long Head & Ischial tuberosity & Head of fibula & Sciatic (tibial) & Extend thigh, flex leg & Covers sciatic nerve \\
\hline \begin{tabular}{l}
Biceps femoris: \\
Short Head
\end{tabular} & Linea aspera, supra condylar line & Fibula, lateral tibia & Sciatic (peroneal) & Extend thigh, flex leg & Shares insertion tendon with Long Head \\
\hline \multicolumn{6}{|l|}{Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com} \\
\hline
\end{tabular}
\(* y \mid y\) ***

\title{
Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
}

Copyright © 2001 Saunders, An Imprint of Elsevier
THIGH MUSCLES: CROSS SECTIONS


Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com


\section*{LUMBAR PLEXUS}

\section*{ANTERIOR DIVISION}

Genitofemoral (L1-2): pierces Psoas, lies on anteromedial surface
Sensory: Proximal anteromedial thigh
Motor: NONE (in thigh)

Obturator (L2-4): exits via obturator canal, splits into anterior posterior divisions. Can be injured by retractors placed behind the transverse acetabular ligament.
Sensory: Inferomedial thigh: via cutaneous branch of obturator nerve
2.

Gracilis (anterior division)
Motor
Adductor longus (anterior division)
Adductor brevis (ant/post divisions)
Adductor magnus (posterior division)


\section*{LUMBAR PLEXUS}

\section*{POSTERIOR DIVISION}

Lateral Femoral Cutaneous [LFCN](L2-3): crosses ASIS, can be compressed at ASIS.
Sensory: Lateral thigh
Motor: NONE

Femoral (L2-4): lies between psoas major and iliacus; Saphenous nerve branches in Femoral Triangle runs under sartorius.
Sensory: Anteromedial thigh: via anterior/intermediate cutaneous nerves

\section*{Psoas}

Sartorius
4.

Articularis genu

Vastus lateralis
Vastus intermedius
Vastus medialis

\section*{QUADRICEPS \\ Motor: \(\frac{\text { QUADRICEPS }}{\text { Rectus femoris }}\)}


\section*{SACRAL PLEXUS}

\section*{ANTERIOR DIVISION}

Tibial (L4-S3): descends (as sciatic) in posterior thigh
Sensory: NONE (in thigh)
POSTERIOR THIGH
Motor:
Biceps femoris [long head]
Semitendinosus
Semimembranosus

\section*{POSTERIOR DIVISION}

Common peroneal (L4-S2): descends(as sciatic) in posterior thigh
Sensory: NONE (in thigh)
5.

Motor: Biceps femoris [short head]

Posterior Femoral Cutaneous Nerve [PFCN] (S1-3)
6. 7

Sensory: Posterior thigh
Motor: NONE

Copyright © 2008 Elsevier Inc. All rights reserved. www.mdconsult.com

\begin{tabular}{|c|c|c|}
\hline ARTERY & BRANCHES & COMMENT \\
\hline Obturator & Anterior posterior branches & Runs through obturator foramen \\
\hline \multirow[t]{9}{*}{\begin{tabular}{l}
Femoral \\
(Superficial \\
Femoral) \\
[SFA]
\end{tabular}} & \multicolumn{2}{|l|}{In femoral triangle, runs in medial thigh between vastus medialis and adductor longus, to obturator canal, through adductor hiatus, then becomes Popliteal Artery behind knee.} \\
\hline & Superficial circumflex iliac & \\
\hline & Superficial epigastric & \\
\hline & Superficial external pudendal & \\
\hline & Deep external pudendal & \\
\hline & Deep artery of thigh (Profunda) & See below \\
\hline & Descending genicular artery & Anastomosis at knee to supply knee \\
\hline & Articular branch & \\
\hline & Saphenous branch & \\
\hline \multirow[t]{6}{*}{Deep Artery of the thigh (Profunda)} & Medial circumflex & Supplies femoral neck \\
\hline & Lateral circumflex & Supplies femoral neck \\
\hline & Ascending branch & Forms anastomosis at femoral neck \\
\hline & Transverse branch & Contributes to anastomosis at femoral neck \\
\hline & Descending branch & Contributes to anastomosis at femoral neck \\
\hline & Perforators/muscular branches & Supplies femoral shaft and thigh muscles \\
\hline
\end{tabular}

\section*{ARTERIES OF THE FEMORAL NECK}

\begin{tabular}{|l|l|l|}
\hline ARTERY & COURSE & COMMENT \\
\hline \begin{tabular}{l} 
Obturator: Fovea \\
artery (A. of \\
Ligament Teres)
\end{tabular} & \begin{tabular}{l} 
Runs through the ligament of femur \\
head
\end{tabular} & \begin{tabular}{l} 
Relatively minor contribution \\
to femoral head
\end{tabular} \\
\hline Deep Artery of thigh & \begin{tabular}{l} 
Branches from Femoral in Femoral \\
triangle.
\end{tabular} & \begin{tabular}{l} 
Supplies anterior medial \\
thigh
\end{tabular} \\
\hline Medial circumflex & \begin{tabular}{l} 
Between pectineus iliopsoas to \\
posterior femoral neck
\end{tabular} & \begin{tabular}{l} 
Anastomosis: posterior \\
supply
\end{tabular} \\
\hline Ascending branch & Runs on Quadratus femoris & \begin{tabular}{l} 
Can be injured in posterior \\
approach
\end{tabular} \\
\hline Lateral circumflex & \begin{tabular}{l} 
Deep to sartorius and rectus \\
femoris
\end{tabular} & \begin{tabular}{l} 
Extracapsular anastomosis \\
at neck
\end{tabular} \\
\hline Ascending branch & To greater trochanter anteriorly & Anastomosis: anterior supply \\
\hline Cervical branches & \begin{tabular}{l} 
Extracapsular branches of \\
anastomosis
\end{tabular} & \begin{tabular}{l} 
Pierce the capsule
\end{tabular} \\
\hline Retinacular arteries & \begin{tabular}{l} 
Intracapsular branches: run along \\
neck, enter bone at base of femoral
\end{tabular} & \begin{tabular}{l} 
Most of femoral head supply \\
is posterior (at risk in injury: \\
hVN)
\end{tabular} \\
\hline Transverse branch & Extends laterally & \begin{tabular}{l} 
Minor contribution to \\
anastomosis
\end{tabular} \\
\hline Descending branch & Under rectus femoris & \begin{tabular}{l} 
Minor contribution to \\
anastomosis
\end{tabular} \\
\hline Inferior Superior \\
Gluteal arteries & Branches make small contributions to femoral neck anastomosis \\
\hline
\end{tabular}

\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.}

\section*{DISORDERS}
\begin{tabular}{|c|c|c|c|}
\hline DESCRIPTION & H P & WORKUP/FINDINGS & TREATMENT \\
\hline \multicolumn{4}{|c|}{INFLAMMATORYARTHRITIS} \\
\hline \begin{tabular}{l}
Host immunologic response results in synovitis. \\
RA, Lupus, SeroNegative arthropathies, gout, etc.
\end{tabular} & Hx: Pain, stiffness, +/other joints involved. PE: Antalgic gait, decreased ROM (especially IR) & XR: AP, frog leg lateral Labs: RF, ESR, CRP ANA, CBC, uric acid, crystals, culture & \begin{tabular}{l}
Physical \\
1. therapy, NSAIDs \\
2. Cane or crutch \\
3. Synovectomy (early) Total hip \\
4. Arthroplasty (late)
\end{tabular} \\
\hline \multicolumn{4}{|c|}{OSTEOARTHRITIS} \\
\hline \begin{tabular}{l}
Loss or damage \\
- to articular cartilage \\
Etiology: developmental, \\
- trauma, infection, metabolic, idiopathic
\end{tabular} & Hx: Chronic hip or groin pain, increasing over time with activity PE: Decrease ROM (first IR), + log roll, +/- flexion contracture antalgic gait & \begin{tabular}{l}
XR: AP/lateral hip \\
1. Joint space narrowing \\
2. Osteophytes \\
3. Subchondral sclerosis \\
4. Bony cysts
\end{tabular} & \begin{tabular}{l}
NSAIDs, \\
1. Physical Therapy Injection, \\
2. activity modification, cane \\
3. Osteotomy (young) \\
4. Arthrodesis (young) Total Hip \\
5. Arthroplasty (elderly)
\end{tabular} \\
\hline \multicolumn{4}{|l|}{LATERAL FEMORAL CUTANEOUS NERVE ENTRAPMENT (Meralgia Paresthetica)} \\
\hline \begin{tabular}{l}
- Nerve trapped near ASIS. \\
Due to activity (hip extension), or clothing (e.g. belt)
\end{tabular} & Hx : Pain/burning in lateral thigh PE: Decreased sensation on lateral thigh, + Meralgia & XR: AP/lateral of hip: rule out other pathology & \begin{tabular}{l}
Remove \\
1. compressive entity \\
2. Surgical release: rare
\end{tabular} \\
\hline \multicolumn{4}{|c|}{OSTEONECROSIS (Avascular necrosis: AVN)} \\
\hline \begin{tabular}{l}
Necrosis of \\
- femoral head (trabecular bone) \\
- Due to vascular disruption \\
Associated with \\
- trauma, Etoh, steroid use, RA \\
Ficat classification: 4 \\
- stages based on sx, XR, bone scan
\end{tabular} & \begin{tabular}{l}
Hx : Insidious onset dull hip ache \\
PE: With collapse: pain with \(\operatorname{RR} \operatorname{ER}\) \\
Without collapse: discomfort with IRER
\end{tabular} & XR: AP, frog leg lateral: femoral head sclerosis MR: Double line sign (T2) & \begin{tabular}{l}
Early: core decompression or vascularized fibular graft \\
Late or collapse: Total hip arthroplasty
\end{tabular} \\
\hline \multicolumn{4}{|c|}{SNAPPING HIP (lliotibial band)} \\
\hline ITB snapping over greater trochanter of iliopsoas tendon over pectineal eminence & Hx : Snapping in hip with walking (as hip extends). Pain rare. & XR: AP pelvis, AP/latearl of hip: usually normal, rule & \begin{tabular}{l}
1. Reassurance \\
Avoid \\
2. activity, \\
Physical therapy
\end{tabular} \\
\hline
\end{tabular}

Women (wide
- pelvis) most common

ᄃ. Huuuut liex hip, then extend: + snap

TROCHANTERIC BURSITIS

Hx: Lateral hip pain. Cannot
sleep on affected XR: AP pelvis, side.
PE: Point
tenderness at greater trochanter AP/lateral of hip: rule out spur, OA, calcified tendons
out other pathology
3. Injection for acute bursitis
4. Surgery rare
- Inflammation of bursa over greater trochanter or gluteal tendons


1. NSAIDs

Physical
2. therapy (IT

Band stretching)
3. Steroid injection

\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.}

Copyright © 2001 Saunders, An Imprint of Elsevier
TOTAL HIP ARTHROPLASTY

\section*{TIPS ON TOTAL HIPS}

\section*{GENERAL INFORMATION}

Types of implants: cemented, noncemented (press fit porous ingrowth), hybrid
- "Supermetals": cobalt chrome titanium (shaft/head)
- - Acetabular cup: Ultra high-molecular weight polyethylene
- Porous ingrowth: best pore size 200-400 microns
- Cemented usually used in elderly patients, noncemented for younger patients
- Cement: Polymethylmethacralate
- Head size: \(26-28 \mathrm{~mm}\) is optimal

\section*{INDICATIONS}

Arthritis of hip: common etiologies: OA, RA, AVN
Most patients complain of pain, worsening over time (wakes them from sleep), and decreased ability to ambulate.
Patient should have appropriate radiographic evidence of arthritis
It is preferable when the patient is elderly (needs only one replacement)
OSTEOARTHRITIS
RHEUMATOID ARTHRITIS
1. Joint space narrowing
1. Joint space narrowing
2. Sclerosis
2. Periarticular osteoporosis
3. Subchondral cysts
3. Joint erosions
4. Osteophyte formation
4. Ankylosis

Failed conservative treatment: activity modification, weight loss, physical
2. therapy/strengthening, NSAIDs, ambulation assistance (cane used on unaffected side, walker, etc.), injections.
3. Other: Fractures, tumors, developmental disorders (DDH, etc.)

\section*{CONTRAINDICATIONS}
- Young, active patient (will wear out replacement many times)
- Medically unstable (e.g. severe cardiopulmonary disease)
- Neuropathic joint
- Any infection

ALTERNATIVES
- Considerations: Age, activity level, overall health
- Osteotomy: Femoral or pelvic; not common in U.S.
1. . Arthrodesis/Fusion: good for young patients/laborers, unilateral disease, no other joint disease (e.g. spine, knee). Fuse with hip in slight flexion
PROCEDURE
- Posterior or lateral approach usually used
- Femoral component should be in valgus ("Thou shalt not Varus")
- Acetabular cup at \(45^{\circ}\)

\section*{COMPLICATIONS}

Failure of Implant
1. Loosening (\#1 complication in cemented joints)
- 2. Varus alignment
3. Implant breakage (patients: active, heavy, young, will wear out prosthetic)
- Hip thigh pain post-operatively (\#1 complication in noncemented joints)
- Deep Venous Thrombosis (DVT)/Pulmonary emboli: patients should be anticoagulated (Heparin/warfarin) postoperatively
- Infection: often leads to removal of prosthesis (Staph\#1 cause)
- Dislocation: posterior are most common (abduction pillow can help prevent)
- External iliac/Femoral artery and vein injury with anterior/superior quadrant screw
- Obturator nerve, artery, vein injury with anterior/inferior quadrant screw.

Posterior screw placement is preferable
- Nerve injury (sciatic: peroneal portion) by retractors: Foot drop
- Heterotopic ossification: one dose prophylactic XRT can help prevent it.
- Osteolysis: Macrophage response; due to polyethylene wear debris

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

TIPS ON TOTAL HIPS
Total Hip Replacement


Reduction of hip with prosthesis in place.

\section*{PEDIATRIC DISORDERS}

Internal Femoral Torsion


\section*{DESCRIPTION EVALUATION TREATMENT/COMPLICATIONS \\ DEVELOPMENTAL DYSPLASIA}
- Capsule/ligament laxity,
1. or

Acetabular roof
2. abnormal: hip does not develop correctly
Associated with: First female, breech
- delivery, + family health, decreased intrauterine space conditions
Early diagnosis and
- treatment essential (3mo)
- Poor outcomes if diagnosis delayed

Goal: maintain femoral head in the acetabulum (concentric reduction):
1. Pavlik harness

Internal rotation of femur,
- femoral anteversion does not decrease properly
- \#1 cause of intoeing
parents.
PE: + Barlow (dislocation), + Ortalani (relocation),
Ortalani (relocatio
+ Galeazzi tests.
Decreased

XR: In older patients US: if PE not conclusive

FEMORALANTEVERSION
Hx: Twins, other risk factors. Often unnoticed by

\section*{abduction}

Hx: Usually presents
3-6 yrs
PE: Femur \(\mathbb{R}(\mathbb{R}\)
\(65^{\circ}\) ), patella is
medial, intoeing gait
1. Most spontaneously resolve
Derotational osteotomy if
2. it persists past age 10 (mostly cosmetic)


DESCRIPTION

\section*{LEGG-CALVE-PERTHES DISEASE}

Hx :
Boys(4:1)
usually 4-8
yo,
unilateral
thigh or
knee pain The femoral head must limp revascularize
PE:
Decreased abduction, no point tenderness on exam
XR: AP pelvis, frog lateral (density of the femoral head is indicative; crescent sign: subchondral fx)

Based on age:
5 yrs: observation NSAIDs

5-8 yrs: concentric containment: abduction brace or osteotomy
9+ yrs: operative treatment often fails (many need THA as adult)
- 9 or with large femoral head involvement
- Osteonecrosis of femoral head
Idiopathic, vascular
- etiology
(hypercoaguable/sludging)
- Associated with: + family history, breech birth
- Catteral classification: 4
stages
Poor prognosis: after age

\section*{SURGICALAPPROACHES}

\begin{tabular}{|c|c|c|c|}
\hline USES & INTERNERVOUS PLANE & DANGERS & COMMENT \\
\hline \multicolumn{4}{|c|}{POSTERIOR (Moore/Southern) APPROACH TO HIP} \\
\hline \begin{tabular}{l}
1. Total Hip Arthroplasty \\
2. Arthroplasty ORIF \\
3. posterior acetabulum Posterior \\
3. hip dislocations
\end{tabular} & Split gluteus maximus [Inferior gluteal n\(]\) & \begin{tabular}{l}
1. Sciatic nerve Inferior \\
2. gluteal artery
\end{tabular} & \begin{tabular}{l}
Superior and \\
1. inferior gluteal arteries need to be controlled. \\
The short external \\
2. rotators must be detached to access the joint.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{LATERAL (Hardinge) APPROACH TO HIP} \\
\hline Total Hip Arthroplasty (not used for revisions) & Split gluteus medius [Superior gluteal n] & \begin{tabular}{l}
Superior \\
1. gluteal artery \\
2. Femoral nerve Femoral \\
3. Artery vein
\end{tabular} & \begin{tabular}{l}
No osteotomy of greater trochanter \\
1. required. Leads to earlier mobilization. \\
Less exposure than posterior \\
2. approach, thus not used for revision THA.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{LATERALAPPROACH TO THIGH} \\
\hline \begin{tabular}{l}
1. Fractures \\
? Tumare
\end{tabular} & Split vastus lateralis (and intermedius) & \begin{tabular}{l}
Branch of Lateral \\
1. femoral circumflex artery
\end{tabular} & \begin{tabular}{l}
Incision can be large or small; it is made along the \\
1. line between greater trochancter and lateral condyle.
\end{tabular} \\
\hline
\end{tabular}


\section*{CHAPTER 8 - LEG/KNEE}
- TOPOGRAPHIC ANATOMY
- OSTEOLOGY
- TRAUMA
- KNEE JOINTS
- MINOR PROCEDURES: KNEE
- HISTORY
- PHYSICAL EXAM
- MUSCLES: ORIGINS AND INSERTIONS
- MUSCLES: ANTERIOR COMPARTMENT
- MUSCLES: LATERAL COMPARTMENT
- MUSCLES: SUPERFICIAL POSTERIOR COMPARTMENT
- MUSCLES: DEEP POSTERIOR COMPARTMENT
- MUSCLES: CROSS SECTIONS
- NERVES
- ARTERIES
- DISORDERS
- DISORDERS: LIGAMENT INJURIES
- DISORDERS
- TOTAL KNEE ARTHROPLASTY
- TOTAL KNEE ARTHROPLASTY
- PEDIATRIC DISORDERS
- SURGICAL APPROACHES

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier
CHAPTER 8 - LEG/KNEE
TOPOGRAPHIC ANATOMY


\footnotetext{
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com
}

\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.}

Copyright © 2001 Saunders, An Imprint of Elsevier

\section*{OStEOLOGY}

\begin{tabular}{|c|c|c|c|c|}
\hline CHARACTERISTICS & OSSIFY & & FUSE & COMMENT \\
\hline \multicolumn{5}{|c|}{TIBIA} \\
\hline - Long bone characteristics & \begin{tabular}{l}
Primary: \\
Body
\end{tabular} & \begin{tabular}{l}
7 \\
wks \\
(fetal)
\end{tabular} & \[
\begin{aligned}
& 18 \\
& \text { years }
\end{aligned}
\] & - Ossification site at the tibial tuberosity can be confused with a fracture. \\
\hline - Wide proximal end (plateau) articulates with the femoral condyles & Secondary & & \[
\begin{aligned}
& 18- \\
& 20 \\
& \text { years }
\end{aligned}
\] & - Traction (quadriceps) apophysitis at the tibial tuberosity: Osgood Schlatter disease \\
\hline - Distal end (plafond) cups the talus & \begin{tabular}{l}
1. \\
Proximal epiphysis
\end{tabular} & 9 mo & & - Primary weight-bearing bone in leg \\
\hline - Medial malleolus is distal end & 2. Distal epiphysis & 1 yr & & \\
\hline - \(\Pi\) Band inserts on Gerdy's tubercle & 3. Tibial tuberosity & & & \\
\hline \multicolumn{5}{|c|}{FIBULA} \\
\hline - Long bone characteristics & \begin{tabular}{l}
Primary: \\
Body
\end{tabular} & 8 wks (fetal) & \[
\begin{aligned}
& 20 \\
& \text { years }
\end{aligned}
\] & - Common peroneal nerve runs across the neck, injured in fractures (foot drop) \\
\hline - Distal end (lateral malleolus) is lateral wall of ankle mortise. & Secondary & & \[
\begin{aligned}
& 18- \\
& 22 \\
& \text { years }
\end{aligned}
\] & - Used to determine "lateral" on radiographs \\
\hline & \begin{tabular}{l}
1. \\
Proximal epiphysis
\end{tabular} & \(1-3 \mathrm{yr}\) & & \\
\hline
\end{tabular}


\section*{TRAUMA}


\section*{DESCRIPTION EVALUATION CLASSIFICATION TREATMENT PATELLAFRACTURE}

Mechanism:
direct indirect:
- (e.g. fall,
dashboard or HX: Trauma. Pain, kicking injury)
Pull of quadriceps
- and patella tendons displace most fractures

If intact,
- retinaculum resists displacement
Do not
- confuse with
bipartite patella

COMPLICATIONS: Osteoarthritis and/or pain, Decreased motion and/or strength; Osteonecrosis; Refracture

TIBIAL PLATEAU FRACTURE

Mechanism:
- Direct blow (e.g. MVA)
- Intraarticular fracture
Restoration of
- articular
surface is important
- Most often lateral
Metaphyseal injury: bone
- compresses, leads to functional bone loss.
Associated
- with ligament injuries

Schatzker (6 types):
I. Lateral plateau split fx

\section*{II. Lateral} split/depression fx
III. Lateral plateau depression
IV. Medial plateau split fx
V. Bicondylar plateaufx
VI. Fx with metaphysealdiaphyseal separation
+/- Aspirate hemarthroses
Undisplaced ( 6 mm ): cast, ROM at 6 wks , WB 3mos.
Displaced/unstable:
ORIF: plates and
screws +/- bone graft
Mobilize early, weight- bear at 2 months

COMPLICATIONS: Compartment syndrome; Hardware failure or loss of reduction; OA; Popliteal artery or nerve injury

KNEE DISLOCATION
- Rare: Ortho
emergency
- Usually high energy injury Ligaments
- other soft
- tissue are disrupted
High incidence of
- associated
- fracture neurovascular injury
Close follow
\begin{tabular}{l|l|}
\hline \begin{tabular}{l} 
HX: Trauma. Pain, \\
inability to bear
\end{tabular} & \\
weight. & By position: \\
\begin{tabular}{l|l} 
PE: Effusion, \\
deformity, pain, + - \\
distal pulses
\end{tabular} & Anterior \\
peroneal nerve & Posterior \\
function & Lateral \\
\hline XR: AP/lateral & Medial \\
\hline \begin{tabular}{l} 
AGRAM: ID arterial \\
injury
\end{tabular} & \begin{tabular}{l} 
Rotatory: \\
Anteromedial \\
MR: Ligament
\end{tabular} \\
or anterolateral. \\
injury & \\
\hline
\end{tabular}
Early reduction
essential Post
reduction neuro-
logic exam and \(x\) -
rays.
Immobilize (cast): 6-
8 wks (not if
ligaments torn)
Open: If irreducible,
vascular injury (+/-
pro-phylactic
fasciotomy), early
repair of ligaments if
needed.
- up is important for good result

COMPLICATIONS: Neurovascular: Popliteal artery, peroneal nerve injury; Decreased motion; Instability



\section*{DESCRIPTION EVALUATION CLASSIFICATION TREATMENT TIBIASHAFT FRACTURE}
- Common long bone fracture
- Young adults

Often tibia/fibula fracture or tibia
- fracture/dislocation combination injuries

Tenuous blood
- supply: union is a problem.
Up to 5\% residual
- angulation is acceptable

HX: Trauma.
Cannot bear weight, pain, swelling.
PE: Swelling,
deformity, +/tense compartments open wound. Palpate pulse
XR: AP/lateral
leg, + knee and ankle series
AGRAM: if pulseless
tissue injuries
Articular surface
- repair is difficult essential
- Healing is often slow

PE
XR: AP/lateral (obliques) CT: Needed: better image of articular surface

COMPLICATIONS: Post-traumatic Osteoarthritis (almost 100\% in comminuted fractures); Decreased motion; Malunion/nonunion


Pilon fracture
Usual cause is
Usual cause is vertical loading of ankle joint,
eg, falling from height and landing on heel
fusually with ankle dorsiflexed). Fracture and
compression of
separticula suratiace of tibia splus
coparation of malieoli and tracture of tibula

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

\begin{tabular}{cc} 
SUPPORT & ATTACHMENTS COMMENTS \\
FEMORAL/TIBIAL: CONDYLOID
\end{tabular}

\section*{ANTERIOR}

Patellofemoral joint
Anterior cruciate (ACL) Transverse meniscal ligament

MEDIAL
\begin{tabular}{|l|l|l|}
\hline Meniscus & \begin{tabular}{l} 
Between femoral condyle tibial \\
plateau
\end{tabular} & More crescentic than lateral \\
\hline Capsule (III) & Surrounds joint & Minimal support \\
\hline Medial collateral (MCL) & \begin{tabular}{l} 
Medial epicondyle to tibia (II) \\
meniscus (III)
\end{tabular} & Superficial (II) and Deep (III) portion \\
\hline Coronary ligament (III) & Meniscus to medial tibia & Stabilizes meniscus \\
\hline \begin{tabular}{l} 
Semimembranous \\
membrane (II)
\end{tabular} & Attach to posterior tibial condyle & \\
\hline \begin{tabular}{l} 
Pes anserinus tendons \\
(I)
\end{tabular} & Medial tibial condyle & Tendinitis can occur at insertion \\
\hline LATERAL & \begin{tabular}{l} 
Between femoral condyle tibial \\
plateau
\end{tabular} & More circular than medial \\
\hline Meniscus & Proximal tibia & Intraarticular tendon \\
\hline \begin{tabular}{l} 
Popliteus muscle \\
tendon
\end{tabular} & Surrounds joint & Minimal support \\
\hline Capsule (III) & \begin{tabular}{l} 
Posterolateral femoral condyle \\
to fibular head
\end{tabular} & Covers popliteus tendon \\
\hline Arcuate ligament (III) & Fabella to fibula & Variable \\
\hline \begin{tabular}{l} 
Fabellofibular ligament \\
(III)
\end{tabular} & \begin{tabular}{l} 
Fal
\end{tabular} \\
\hline
\end{tabular}

See page 212
Tibial eminence to medial Prevents anterior translation, tight in aspect of lateral femoral condyle flexion, must reconstruct if injured

Anterior menisci

Between femoral condyle tibial plateau

Surrounds joint
Medial epicondyle to tibia (II) meniscus (III)

Attach to posterior tibial condyle

Medial tibial condyle

Between femoral condyle tibial plateau
\begin{tabular}{|c|c|c|}
\hline (III) & fibular head & ' ieverino varuo an inuauvir \\
\hline Biceps muscle tendon (I) & Gerty's tubercle fibular head & \\
\hline lliotibial band (I) & Lateral tibial condyle & If tight, ITB syndrome can occur \\
\hline \multicolumn{3}{|l|}{POSTERIOR} \\
\hline Capsule (III) & Surrounds joint & Minimal support \\
\hline Ligament of Humphrey & Posterior lateral meniscus to medial femoral condyle & In front of PCL \\
\hline Posterior cruciate (PCL) & Tibial sulcus to anterior medial femoral condyle & Prevents posterior translation \\
\hline \multirow[t]{2}{*}{Ligament of Wrisberg} & Posterior lateral meniscus to medial femoral & Behind the PCL \\
\hline & condyle & \\
\hline Oblique popliteal ligament & Semimembranous to lateral femoral condyle & Derived from semimembranous \\
\hline Gastrocnemius/plantaris muscle & Origin: posterior medial lateral femoral condyles & Two heads originate above knee \\
\hline
\end{tabular}



naxanotumean


\section*{Inferior view}

\begin{tabular}{l|l|l|}
\hline Quadriceps tendon & Attach on superior patellar pole & Superior extensor mechanism \\
\hline Patellar ligament (tendon) & \begin{tabular}{l} 
Inferior patella pole to tibial \\
tuberosity
\end{tabular} & Inferior extensor mechanism \\
\hline \begin{tabular}{l} 
Medial lateral retinaculum \\
(quadriceps oblique fibers) (II)
\end{tabular} & \begin{tabular}{l} 
Quadriceps extensions to \\
patella, then to tibial condyles
\end{tabular} & \begin{tabular}{l} 
Stabilizes patella in motion. \\
Can affect Q angle if tight
\end{tabular} \\
\hline \begin{tabular}{l} 
Medial lateral patellofemoral \\
ligaments (II)
\end{tabular} & Patella to femoral condyles & Stabilizes patella \\
\hline \begin{tabular}{l} 
Medial lateral patellotibial \\
ligaments
\end{tabular} & Patella to tibial condyles & Stabilizes patella \\
\hline \begin{tabular}{l} 
Anterior ligament of head of \\
fibula
\end{tabular} & Fibula head to lateral tibia & Broader than posterior \\
\hline \begin{tabular}{l} 
Posterior ligament of head of \\
fibula
\end{tabular} & Fibula head to lateral tibia & Weaker than anterior \\
\hline Interosseous membrane & Lateral tibia to medial fibula & Strong; runs length of leg \\
\hline - Three compartments in the knee: Medial, Lateral, Patellofemoral & \\
\hline - Meniscus: Made of fibrocartilage. Function: 1) Protects articular cartilage (increases weight \\
bearing surface area, 2) Stabilizes by deepening facet, 3) Load transmission \\
\hline \begin{tabular}{l} 
Peripheral 1/3 vascular (geniculate arteries): can be repaired; Inner 2/3 supplied by synovial fluid: \\
must debride in injured
\end{tabular} & \begin{tabular}{ll} 
- There are three layers of support in the knee: I, II, III (noted in parentheses next to structure)
\end{tabular} \\
\hline - Posterolateral corner complex: Arcuate ligament, popliteus, posterolateral capsule \\
\hline - Muscles attaching at the pes anserinus: sartorius, gracilis, semitendinosus \\
\hline
\end{tabular}
- Muscles attaching at the pes anserinus: sartorius, gracilis, semitendinosus



\section*{STEPS}

\section*{ARTHOCENTESIS/INJECTION}

\section*{1. Ask patient about allergies}
2. Place patient supine, knee extended, palpate the lateral patella and lateral distal femur.
3. Prepare skin over the knee (iodine/antiseptic soap)
4. Anesthetize skin locally (quarter size spot)
5. Insert an 18 gauge needle laterally into the suprapatella pouch (between the patella and femur) proximal to the joint. Aspirate fluid from joint (or inject 3-5cc of local/steroid preparation). Fluid should flow easily if needle is in joint.
6. If suspicious of infection, send fluid for GS culture.
7. Dress injection site

HISTORY

\begin{tabular}{|c|c|c|}
\hline QUESTION & ANSWER & CLINICAL APPLICATION \\
\hline \multirow[t]{2}{*}{1. AGE} & Young & Trauma: fractures, ligamentous or meniscal injury \\
\hline & Middle age, elderly & Arthritis \\
\hline \multicolumn{3}{|l|}{2. PAIN} \\
\hline \multirow[t]{2}{*}{a. Onset} & Acute & Trauma: fracture, dislocation, soft tissue (ligament/meniscus) injury, septic bursitis \\
\hline & Chronic & Arthritis, infection, tendinitis/bursitis, tumor \\
\hline \multirow[t]{4}{*}{b. Location} & Anterior & Quadricep or patellar tear or tendinitis, prepatellar bursitis, patellofemoral arthritis \\
\hline & Posterior & Meniscus tear (posterior horn), Baker's cyst, popliteal aneurysm \\
\hline & Lateral & Meniscus tear (jointline), collateral ligament injury, arthritis, ITB friction syndrome \\
\hline & Medial & Meniscus tear (jointline), collateral ligament injury, arthritis, pes bursitis \\
\hline \multirow[t]{2}{*}{c. Occurrence} & Night pain & Tumor, infection \\
\hline & With activity & Etiology of pain likely from joint \\
\hline \multirow[t]{2}{*}{3. STIFFNESS} & Without locking & Arthritis, effusion (trauma, infection) \\
\hline & With locking or catching & Loose body, meniscal tear (especially bucket handle), arthritis, synovial plica \\
\hline \multirow[t]{3}{*}{4. SWELLING} & Within joint & Infection, trauma \\
\hline & Acute (post injury) & Acute (hours): ACL injury; Subacute (day): meniscus injury \\
\hline & Acute (without injury) & Infection: prepatellar bursitis, septic joint \\
\hline \multirow[t]{2}{*}{5. INSTABILITY} & Giving away/collapse & Cruciate ligament injury, extensor mechanism injury \\
\hline & Giving away,+/pain & Patellar subluxation/dislocation, pathologic plica, osteochondritis dissecans \\
\hline \multirow[t]{4}{*}{6. TRAUMA} & Mechanism: valgus force & MCL injury (+/- terrible triad: MCL, ACL, medial meniscus injuries) \\
\hline & Varus force & LCL injury \\
\hline & Flexion/posterior force & PCL injury (e.g. dashboard injury) \\
\hline & Contact injury & Non-contact: ACL injury, Contact: multiple ligaments \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline & Popping noise & \begin{tabular}{l} 
Cruciate ligament injury (especially ACL), \\
osteochondral fracture
\end{tabular} \\
\hline & NONE & Degenerative and overuse etiology \\
\hline 7. ACTIVITY & Agility sports & Cruciate and/or collateral ligament injury \\
\hline & \begin{tabular}{l} 
Running, cycling, \\
climbing
\end{tabular} & Patellofemoral etiology \\
\hline Squatting & Mensicus tear \\
\hline \begin{tabular}{l} 
8. NEUROLOGIC \\
SYMPTOMS
\end{tabular} & \begin{tabular}{l} 
Pain, numbness, \\
tingling
\end{tabular} & Neurologic disease, trauma \\
\hline \begin{tabular}{l} 
9. SYSTEMIC \\
COMPLAINTS
\end{tabular} & Fevers, chills & Infection, septic joint \\
\hline \begin{tabular}{l} 
10. HISTORY OF \\
ARTHRITIDES
\end{tabular} & \begin{tabular}{l} 
Multiple joints \\
involved
\end{tabular} & Rheumatoid Arthritis, gout, etc. \\
\hline
\end{tabular}

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com


\section*{EXAM TECHNIQUE/FINDINGS CLINICALAPPLICATION INSPECION}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Gait} & Observe patella tracking & Abnormal patella tracking can lead to patellofemoral problems \\
\hline & Flexed knee gait & Tight Achilles tendon or hamstrings: patellofemoral problems \\
\hline \multirow[t]{2}{*}{Anterior} & Genu valgum (knock knee) Genu varum (bow leg) & Normal: 7 degrees valgus; varus or valgus deformity with ligamentous or osseous deficiency \\
\hline & Swelling & Effusion (arthritis, trauma, infection/inflammation), bursitis (prepatellar, infrapatellar) \\
\hline Posterior & Swelling, mass & Effusion (arthritis), Baker's cyst \\
\hline Lateral & Back knee, high/low riding patella & Genu recurvatum (PCL injury), patella alta (patellar instability) \\
\hline Musculature & Atrophy & Vastus medialis atrophy: can lead to patellofemoral problems \\
\hline \multicolumn{3}{|r|}{PALPATION} \\
\hline \multirow[t]{2}{*}{Bony structures} & Patella: medial lateral aspects & Tenderness at distal pole: tendinitis (Jumpers knee) \\
\hline & Tibial tubercle & Tenderness with Osgood Schlatter disease \\
\hline \multirow[t]{9}{*}{Soft tissues} & Compress suprapatellar pouch ("milk" knee) & Ballotable patella (effusion): arthritis, trauma, infection \\
\hline & Prepatellar/infrapatellar bursae & Edematous or tender bursae indicate correlating bursitis \\
\hline & Pes anserine bursa & Tenderness indicates bursitis \\
\hline & Plica (medial to patella) & Thickened, tender plica is pathologic \\
\hline & Medial jointline MCL & Tenderness: medial meniscus tear or MCL injury \\
\hline & Lateral jointline LCL & Tenderness: lateral meniscus tear or LCL injury \\
\hline & lliotibial band (anterolateral knee) & Pain or tightness is pathologic \\
\hline & Popliteal fossa & Mass consistent with Baker's cyst, popliteal aneurysm \\
\hline & Compartments of leg (anterior, posterior, lateral) & Firm or tense compartment: Compartment syndrome \\
\hline
\end{tabular}


Acute Anterior Compartment Syndrome

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{EXAM} & \multicolumn{2}{|l|}{TECHNIQUE/FINDINGS CLINICAL APPLICATION} \\
\hline & \multicolumn{2}{|r|}{RANGE OF MOTION} \\
\hline \multirow[t]{3}{*}{Flexion extension} & Supine: knee to chest, then straight & Normal: Flex 0 to \(125-135^{\circ}\), Extend 0 to 5-15 \({ }^{\circ}\); \\
\hline & & Extensor lag (final \(20^{\circ}\) difficult): weak quadriceps; Decreased extension with effusion \\
\hline & Note patellar tracking, pain, crepitus & Abnormal tracking leads to anterior knee pain; pain crepitus: arthritis \\
\hline Tibial IR ER & Stabilize femur, rotate tibia & Normal: 10-15 \({ }^{\circ} \mathrm{IR}\) ER \\
\hline \multicolumn{3}{|r|}{NEUROVASCULAR} \\
\hline \multicolumn{3}{|l|}{Sensory} \\
\hline Femoral nerve
(L4) & Medial leg (Medial cutaneous nerves) & Deficit indicates corresponding nerve/root lesion \\
\hline Peroneal nerve
(L5) & Lateral leg (common superficial) & Deficit indicates corresponding nerve/root lesion \\
\hline Tibial nerve (S1) & Posterior leg (Sural nerves) & Deficit indicates corresponding nerve/root lesion \\
\hline \multicolumn{3}{|l|}{Motor} \\
\hline Femoral nerve (L2-4) & Knee extension & Weakness = Quadriceps or nerve/root lesion \\
\hline Sciatic: Tibial (L4-S3) & Knee flexion & Weakness = Biceps (LH) or nerve/root lesion \\
\hline \[
\begin{aligned}
& \text { Peroneal (L4- } \\
& \text { S2) }
\end{aligned}
\] & Knee flexion & Weakness = Biceps (SH) or nerve/root lesion \\
\hline \[
\begin{aligned}
& \text { Tibial nerve (L4- } \\
& \text { S3) }
\end{aligned}
\] & Foot plantarflexion & Weakness = TP, FHL, FDL or nerve/root lesion \\
\hline \begin{tabular}{l}
Peroneal (deep) \\
n. (L4-S2)
\end{tabular} & Foot dorsiflexion & Weakness = TA, EHL, EDL or nerve/root lesion \\
\hline
\end{tabular}

\section*{Reflex}


Q angle formed by intersection of lines from anterior superior iliac spine and from tibial tuberosity through midpoint of patella. Large \(Q\) angle predisposes to patellar subluxation


Posterior sag sign. Leg drops backward

\section*{EXAM TECHNIQUE/FINDINGS CLINICAL APPLICATION}

\section*{SPECIAL TESTS}

Q
(quadriceps) angle

Patella grind
Patella apprehension

McMurray

Apley compression

\section*{Ligament Stability Tests}
Valgus stress

Varus stress
Lachman
Anterior drawer

Posterior drawer

ASIS to mid-patella to tibia tubercle

Extend knee: fire quads, compress patella

Relax knee: push patella lateral
Flex/ER leg/valgus force, then extend knee
Flex/IR leg/varus force, then extend knee
Prone: knee \(90^{\circ}\), compress rotate tibia

Normal: \(13^{\circ}\) male, \(18^{\circ}\) female; Increased angle: PF Syndrome, subluxation

Pain: patellofemoral joint pathology, patella chondromalacia

Pain/apprehension: subluxation; Medial retinaculum injury
Pop/click on extension indicates medial meniscal tear
Pop/click on extension indicates lateral meniscal tear

Pain/popping: meniscal injury, arthritis

Lateral force: knee at: 1) \(30^{\circ}\), Laxity at: 1) \(30^{\circ}\) : MCL, at 2) \(0^{\circ}\) :
2) \(0^{\circ}\)

Medial force: knee at 1) \(30^{\circ} 2\) ) \(0^{\circ}\)
Flex knee \(30^{\circ}\) : anterior force on tibia
Flex knee \(90^{\circ}\) : anterior force on tibia

Flex knee \(90^{\circ}\) : posterior force on tibia

MCL/PCL/posterior capsule injury
Laxity at: 1) \(30^{\circ}\) : LCL, at 2) \(0^{\circ} \mathrm{LCL} / \mathrm{PCL} /\) posterior capsule injury
Laxity/displacement: ACL injury (most sensitive exam for \(A C L\) )

Laxity/displacement: ACL injury

Posterior translation: PCL injury
\begin{tabular}{|c|c|c|}
\hline Posterior sag & Supine: hip \(45^{\circ} /\) knee \(90^{\circ}\) : lateral view & Posterior translation of tibia on femur: PCL injury \\
\hline Quadriceps active & Supine: flex knee \(90^{\circ}\), fire quadriceps & Posterior translated tibia will translate anterior when quadriceps fire: PCL injury \\
\hline Pivot shift & Supine: extend knee, \(\mathbb{R}\), valgus force on proximal tibia, then flex & Clunk with flexion: AnteroLateral Rotary Instability (ALRI): ACL and/or posterior capsule injury \\
\hline Reverse pivot shift & Supine: knee at \(45^{\circ}, E R\), valgus force on proximal tibia, extend & Clunk with extension: PosteroLateral Rotary Instability (PLRI): PCL and/or Posterolateral corner injury \\
\hline Slocum & Knee \(90^{\circ}\), ER foot \(15^{\circ}\), anterior force & Displacement: AnteroMedial Rotary Instability \\
\hline & Knee \(90^{\circ}, \mathbb{R}\) foot \(30^{\circ}\), anterior force & Displacement: AnteroLateral Rotary Instability (ALRI): ACL injury \\
\hline Posterior lateral drawer & Knee \(90^{\circ}\), ER foot \(15^{\circ}\), posterior force & Displacement: PosteroLateral Rotary Instability (PLRI): PCL/corner \\
\hline Posterior medial drawer & Knee \(90^{\circ}, \operatorname{IR}\) foot \(30^{\circ}\), posterior force & Displacement: PosteroMedial Rotary Instability (PMRI): PCL \\
\hline Prone ER at
\[
30^{\circ} 90^{\circ}
\] & Prone: ER both knees at:
\[
\text { 1) } 30^{\circ} \text {, 2) } 90^{\circ}
\] & Increased ER at: 1) 30: PL corner, 2) 90: PCL PL corner injury \\
\hline
\end{tabular}
 somereate with that d unimiured side. utict 15 tested firse Foi varas stres tert, drection of preswer reversed



Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier
MUSCLES: ORIGINS AND INSERTIONS


\footnotetext{
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com
}

\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.}

Copyright © 2001 Saunders, An Imprint of Elsevier

\section*{MUSCLES: ANTERIOR COMPARTMENT}

\begin{tabular}{|l|l|l|l|l|l|}
\hline MUSCLE & ORIGIN & INSERTION & NERVE & ACTION & COMMENT \\
\hline \begin{tabular}{l} 
Tibialis \\
anterior [TA]
\end{tabular} & \begin{tabular}{l} 
Lateral tibia, \\
interosseous \\
membrane
\end{tabular} & \begin{tabular}{l} 
Medial cuneiform, \\
base of 1 st \\
metatarsal
\end{tabular} & \begin{tabular}{l} 
Deep \\
peroneal
\end{tabular} & \begin{tabular}{l} 
Dorsiflex \\
invert foot
\end{tabular} & \begin{tabular}{l} 
Test L4 motor \\
function
\end{tabular} \\
\hline \begin{tabular}{l} 
Extensor \\
hallucis longus \\
[EHL]
\end{tabular} & \begin{tabular}{l} 
Medial fibula, \\
interosseous \\
membrane
\end{tabular} & \begin{tabular}{l} 
Base of distal \\
phalanx of great \\
toe
\end{tabular} & \begin{tabular}{l} 
Deep \\
peroneal
\end{tabular} & \begin{tabular}{l} 
Dorsiflex \\
extend great \\
toe
\end{tabular} & \begin{tabular}{l} 
Test L5 motor \\
function
\end{tabular} \\
\hline \begin{tabular}{l} 
Extensor \\
digitorum \\
longus [EDL]
\end{tabular} & \begin{tabular}{l} 
Lateral tibia \\
condyle proximal \\
fibula
\end{tabular} & \begin{tabular}{l} 
Base of middle \\
distal phalanges \\
toes)
\end{tabular} & \begin{tabular}{l} 
Deep \\
peroneal
\end{tabular} & \begin{tabular}{l} 
Dorsiflex \\
extend \\
lateral 4 \\
toes
\end{tabular} & \begin{tabular}{l} 
Single tendon \\
divides into four \\
tendons
\end{tabular} \\
\hline Peroneus & \begin{tabular}{l} 
Distal fibula, \\
interosseous \\
membrane
\end{tabular} & \begin{tabular}{l} 
Base of 5th \\
metatarsal
\end{tabular} & Deep & Dorsiflex \\
peroneal & Often adjoined to \\
\hline
\end{tabular}

MUSCLES: LATERAL COMPARTMENT

\begin{tabular}{|l|l|l|l|l|l|}
\hline MUSCLE & ORIGIN & INSERTION & NERVE & ACTION & COMMENT \\
\hline \begin{tabular}{l} 
Peroneus \\
longus
\end{tabular} & \begin{tabular}{l} 
Proximal \\
lateral \\
fibula
\end{tabular} & \begin{tabular}{l} 
Medial cuneiform, base \\
of 1 st MT (plantarly)
\end{tabular} & \begin{tabular}{l} 
Superficial \\
peroneal
\end{tabular} & \begin{tabular}{l} 
Evert, \\
plantar flex \\
foot
\end{tabular} & \begin{tabular}{l} 
Test S1 motor function. \\
Runs under the foot
\end{tabular} \\
\hline \begin{tabular}{l} 
Peroneus \\
brevis
\end{tabular} & \begin{tabular}{l} 
Distal \\
lateral \\
fibula
\end{tabular} & Base of 5 th metatarsal & \begin{tabular}{l} 
Superficial \\
peroneal
\end{tabular} & Evert foot & \begin{tabular}{l} 
Can cause avulsion fx \\
at base of 5th MT
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com
}

\section*{MUSCLES: SUPERFICIAL POSTERIOR COMPARTMENT}

\begin{tabular}{|l|l|l|l|l|l|}
\hline MUSCLE & ORIGIN & INSERTION & NERVE ACTION & COMMENT \\
\hline Gastrocnemius & \begin{tabular}{l} 
Lateral and medial \\
femoral condyles
\end{tabular} & \begin{tabular}{l} 
Calcaneus (via \\
Achilles tendon)
\end{tabular} & Tibial & \begin{tabular}{l} 
Plantarflex \\
foot
\end{tabular} & \begin{tabular}{l} 
Test S1 motor \\
function Has two \\
heads
\end{tabular} \\
\hline Soleus & \begin{tabular}{l} 
Posterior fibular \\
head/soleal line of \\
tibia
\end{tabular} & \begin{tabular}{l} 
Calcaneus (via \\
Achilles tendon)
\end{tabular} & Tibial & \begin{tabular}{l} 
Plantarflex \\
foot
\end{tabular} & \begin{tabular}{l} 
Fuses to \\
gastrocnemius at \\
Achilles tendon
\end{tabular} \\
\hline Plantaris & \begin{tabular}{l} 
Lateral femoral \\
supracondylar line
\end{tabular} & Calcaneus & Tibial & \begin{tabular}{l} 
Plantarflex \\
foot
\end{tabular} & \begin{tabular}{l} 
Short muscle belly \\
is proximal, has a \\
long tendon.
\end{tabular} \\
\hline
\end{tabular}

\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.}

Copyright © 2001 Saunders, An Imprint of Elsevier

\section*{MUSCLES: DEEP POSTERIOR COMPARTMENT}

\begin{tabular}{|l|l|l|l|l|l|l|}
\hline MUSCLE & ORIGIN & INSERTION & NERVE ACTION & COMMENT \\
\hline Popliteus & Lateral condyle & \begin{tabular}{l} 
Proximal \\
posterior tibia
\end{tabular} & Tibial & \begin{tabular}{l} 
Flex ( IR) \\
knee
\end{tabular} & \begin{tabular}{l} 
Anterior distal to \\
LCL on femur
\end{tabular} \\
\hline \begin{tabular}{l} 
Flexor \\
hallucis \\
longus [FHL]
\end{tabular} & Posterior fibula & \begin{tabular}{l} 
Base of distal \\
phalanx of great \\
toe
\end{tabular} & Tibial & \begin{tabular}{l} 
Plantarflex \\
great toe
\end{tabular} & \begin{tabular}{l} 
Test S1 motor \\
function
\end{tabular} \\
\hline \begin{tabular}{l} 
Flexor \\
digitorum \\
longus [FDL]
\end{tabular} & Posterior tibia & \begin{tabular}{l} 
Bases of distal \\
phalanges of 4 \\
toes
\end{tabular} & Tibial & \begin{tabular}{l} 
Plantarflex \\
lateral 4 \\
toes
\end{tabular} & \begin{tabular}{l} 
At ankle, tendon is \\
just anterior to \\
tibial artery.
\end{tabular} \\
\hline \begin{tabular}{l} 
Tibialis \\
posterior [TP]
\end{tabular} & \begin{tabular}{l} 
Posterior, \\
interosseous \\
membrane, tibia, \\
fibula
\end{tabular} & \begin{tabular}{l} 
Navicular \\
tuberosity, \\
cuneiform, MTs
\end{tabular} & Tibial & \begin{tabular}{l} 
Plantarflex \\
invert foot
\end{tabular} & \begin{tabular}{l} 
Tendon can \\
degenerate \\
rupture: \(2^{\circ}\) pes \\
planus
\end{tabular} \\
\hline
\end{tabular}

\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed}

Copyright © 2001 Saunders, An Imprint of Elsevier

MUSCLES: CROSS SECTIONS

\begin{tabular}{|l|l|l|l|l|}
\hline ANTERIOR & LATERAL & \(\begin{array}{c}\text { SUPERFICIAL } \\
\text { POSTERIOR }\end{array}\) & DEEP POSTERIOR \\
\hline & \multicolumn{3}{c|}{ MUSCLES }
\end{tabular}\(]\)\begin{tabular}{l} 
Popliteus
\end{tabular}

\section*{NERVES}


\section*{LUMBAR PLEXUS \\ POSTERIOR DIVISION}

\section*{1. Femoral (L2-4):}
\begin{tabular}{l|l}
\hline Sensory: & Medial leg: via medial cutaneous nerve (Saphenous N ) \\
\hline Motor: & NONE (in leg) \\
\hline
\end{tabular}

\section*{SACRAL PLEXUS}

\section*{ANTERIOR DIVISION}
2. Tibial (L4-S3): descends between heads of gastrocnemius to medial malleolus

Sensory: Posterolateral proximal calf: via Medial sural
Posterolateral distal calf: via Sural
Motor: SUPERFICIAL POSTERIOR COMPARTMENT OF LEG
Soleus: via nerve to soleus
Plantaris
Gastrocnemius
DEEP POSTERIOR COMPARTMENT OF LEG
Popliteus: via nerve to popliteus
Tibialis posterior [TP] (Tom)
Flexor digitorum longus [FDL] (Dick)
Flexor hallucis longus [FHL] (Harry)
3. Common peroneal (L4-S2): in groove between biceps lateral head of Gastrocnemius. Wraps around fibular head, deep to peroneus longus, then divides. Can be injured in lateral approach to the knee.

Sensory: Proximal lateral leg: via Lateral sural
Distal lateral leg: via superficial peroneal
Motor: \(\quad\) ANTERIOR COMPARTMENT of LEG:
Tibialis anterior [TA]
Extensor hallucis longus [EHL]
Extensor digitorum longus [EDL]
Peroneus tertius
LATERAL COMPARTMENT of LEG:

\section*{Superficial Peroneal Nerve}

Peroneus longus
Peroneus brevis



Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.}

Copyright@2001 Saunders, An Imprint of Elsevier

\section*{ARTERIES}


\section*{COURSE}

BRANCHES
SUPPLY/COMMENT

\section*{POPLITEAL}

Through popliteal fossa. Terminates at the popliteus muscle.

Through 2 heads of Tibialis Posterior interosseous membrane. Then lies on anterior surface of the membrane with deep peroneal nerve, between TA and EHL.

From popliteal, through posterior compartment with tibial nerve to behind medial malleolus (between FDL FHL).

Superior Inferior
Medial Geniculate

Superior Inferior Lateral Geniculate
\begin{tabular}{l|l} 
Middle Geniculate & \begin{tabular}{l} 
Cruciate ligaments \\
synovium
\end{tabular} \\
\hline \begin{tabular}{l} 
Anterior Posterior \\
Tibial
\end{tabular} & Terminal branches
\end{tabular} anastomose around knee patella (supply meniscus)

All four arteries

ANTERIOR TIBIAL
Supplies muscles of the ANTERIOR COMPARTMENT
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Anterior Tibial \\
recurrent
\end{tabular} & Supplies knee \\
\hline \begin{tabular}{l} 
Anterior Medial \\
malleolar
\end{tabular} & Supplies ankle \\
\hline \begin{tabular}{l} 
Anterior Lateral \\
malleolar
\end{tabular} & Supplies ankle \\
\hline Dorsalis Pedis & \begin{tabular}{l} 
Terminal branch in \\
foot
\end{tabular} \\
\hline \begin{tabular}{l} 
POSTERIOR \\
TIBIAL
\end{tabular} & \\
\hline \begin{tabular}{l} 
Supplies muscles of the POSTERIOR \\
COMPARTMENT
\end{tabular} \\
\hline \begin{tabular}{l} 
Posterior Tibial \\
recurrent
\end{tabular} & Supplies the knee \\
\hline Peroneal artery & LATERAL \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{6}{*}{} & malleolar & \\
\hline & Perforating/muscular branches & \\
\hline & Medial calcaneal & \\
\hline & Medial Lateral plantar & Terminal branches in sole \\
\hline & PERONEAL & \\
\hline & \multicolumn{2}{|l|}{Supplies muscles of the LATERAL COMPARTMENT} \\
\hline From posterior tibial between tibialis posterior and FHL. & Posterior lateral malleolar & Terminal branch \\
\hline & Lateral calcaneal Artery & \\
\hline
\end{tabular}

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

\section*{DISORDERS}

\begin{tabular}{ccc|c} 
DESCRIPTION & H P & \begin{tabular}{l} 
WORK- \\
UP/FINDINGS
\end{tabular} & TREATMENT
\end{tabular}


\section*{ANTERIOR FAT PAD SYNDROME (Hoffa disease)}

Hx: Intermittent anterior knee pain

PE: +/- click with motion

XR: AP/Lateral: baja
possible patella 1. RICE, activity modification
2. Surgical excision (rare)

ARTHRITIS: INFLAMMATORY
- Synovitis (pannus formation) destroys articular cartilage and joint
- RA, Gout, SeroNegative arthropathy
- Primary or posttraumatic

\section*{- Loss or} damage to articular cartilage

XR: Arthritis
series
1. Early: medical management

Late:
Labs: RF, ESR, CRP, ANA, CBC, crystals, culture 2.
a) Conservative: like OA Operative:
b) 1. Synovectomy
2. Total knee

\section*{ARTHRITIS: OSTEOARTHRITIS}

Hx: Elderly, pain (worse with activity or weight bearing), stiffness, sticking/grinding.

PE: Effusion, jointline tenderness, +/- angular deformity (varus \#1) or contracture.

XR: Arthritis
series
1. joint space narrowing
2. Injection, activity modification (cane)
- Knee (Medial compartment) \#1 site
3. subchondral 4. High tibial osteotomy (young, 1 sclerosis
sites
4. bony cysts \(\quad\) 5. Total Knee Arthroplasty (old, 1 compartment)

\section*{BAKER'S CYST}
\begin{tabular}{|l|l|l|l}
\hline \begin{tabular}{l} 
- Posterior knee \\
(popliteal fossal)
\end{tabular} & \begin{tabular}{l} 
Hx: Stiffness, + -- \\
knee tenderness
\end{tabular} & \begin{tabular}{l} 
XR: AP/lateral: \\
normal
\end{tabular} & 1. Aspiration initially \\
\hline \begin{tabular}{l} 
- Arises from MM \\
or hamstring \\
tendon (may \\
communicate)
\end{tabular} & \begin{tabular}{l} 
PE: Mass in \\
popliteal fossa
\end{tabular} & \begin{tabular}{l} 
MR or \\
aspiration: \\
confirm \\
diagnosis
\end{tabular} & \begin{tabular}{l} 
2. Surgical resection for recurrence or \\
pain
\end{tabular} \\
\hline
\end{tabular}

BURSITIS: PREPATELLAR (Housemaid's knee)
- Continuous irritation of bursa leads to inflammation
- Most common bursitis in knee
\begin{tabular}{|l|l}
\multicolumn{3}{|c|}{\begin{tabular}{l} 
XR: AP/lateral: \\
normal rule out
\end{tabular}} & 1. NSAID, knee pads, injection \\
\hline Hx: Pain with activity \begin{tabular}{l} 
infection \\
(common \\
problem)
\end{tabular} & \\
\hline \begin{tabular}{l} 
PE: "egg" shaped \\
swelling over patella
\end{tabular} & 2. Bursal removal (rare) \\
\hline & 3. Treat infection if present \\
\hline
\end{tabular}

\section*{BURSITIS: PES ANSERINE}
- Bursa under tendon insertion inflamed (overuse, runner, etc.)

Hx: Pain in medial knee

PE: Pes anserine tenderness

XR: AP/lateral: normal+/- OA, rule out tumor
1. NSAID, activity modification, stretch
2. Partial excision (rare)


Itced downd thitevid opowal




Iliotibial Tract Friction Syndrome
As knee flexes and extends.
iliotibial tract glides back and
forth over lateral femoral
epicondyle, causing friction
DESCRIPTION HP WORK-UP/FINDINGS TREATMENT
CHONDROMALACIA: PATELLOFEMORAL SYNDROME [PFS]
\begin{tabular}{l|l} 
- Damage or softening of & \begin{tabular}{l}
Hx : Anterior knee pain, \\
worse with sitting (theater \\
the patellar articular \\
sign), and/or stairs
\end{tabular} \\
cartilage. & \begin{tabular}{l} 
PE: +/- VMO atrophy,
\end{tabular} \\
\begin{tabular}{ll} 
- Multiple etiologies: \\
trauma, dislocation, \\
malalignment leads to deformity, high Q \\
patellofemoral OA
\end{tabular} & \begin{tabular}{l} 
angle, patellar \\
apprehension, + crepitus
\end{tabular} \\
\hline
\end{tabular}

\section*{COMPARTMENT SYNDROME}
- Increased pressure in closed space
- From: trauma, (e.g. fracture, burn, vascular injury, overexertion)
- Results in nerve injuries soft tissue necrosis
- ITB rubs on lateral femoral condyle
- Common in runners, cyclists

Hx: 5 P's: pain,
parathesias, pulseless, pallor, paralysis.

PE: Firm compartments (check all three)

Compartment pressures: 40 mmHg (normal: 0-10 mmHg)
XR: AP/lateral/sunrise to evaluate alignment. Rule out patellofemoral OA

XR: AP/lateral: normal Rule out tumor
1. Fasciotomy within 4 hours (Usually two incisions)
2. Debride nonviable soft tissue.
1. NSAID,
1. Physical therapy: quadricep strengthening stretching
2. Orthosis if patella subluxes
3. Lateral release (early)
4. Tibial tuberosity realignment
activity modification, stretching
2. Partial excision (rare)

DESCRIPTION HP MENK-UP/FINDINGS TREATMENT
- Young: trauma/twisting injury
- Old:

Degeneration/squat injury
- Seen with ACL
injuries
- Medial lateral (cysts develop)

Hx: Pain, catching/locking (esp. bucket-handle tears)

PE: Effusion, jointline tenderness, + McMurray test

XR: AP (extension \(30^{\circ}\) flexion)/lateral/sunrise, +/arthrocentesis
1. Conservative for minor symptoms
2. Debride (inner 2/3 lesion)
3. Repair (outer \(1 / 3\) or longitudinal lesion)

Improved results with ACL repair

\section*{OSTEOCHONDRITIS DISSECANS}
- Subchondral bone Hx: Insidious onset knee injury
- Unknown etiology: AVN, repetitive microtrauma
- Lateral aspect of medial femoral condyle \#1

XR: AP/lateral: shows radiolucency, +/- fragment or loose body
1. Often
spontaneously heals in children
2. Adults: drill lesion vs. bone graft/chondroplasty

DESCRIPTION HP WORK-UP/FINDINGS TREATMENT
- Synovial tissue (embryonic remnant) thickens rubs medial femoral condyle.
- Medial patellar plica: \#1

Hx: Anteromedial knee pain, catching/popping

PE: Palpable plica, jointline tenderness

XR: AP/lateral Arthrography
1. NSAIDs
2. Activity modification
3. Arthroscopic debridement

PATELLAR COMPRESSION SYNDROME
- Compression of patella due to tight lateral retinaculum

\title{
Subluxation and Dislocation of Palella
}

\begin{tabular}{|c|c|c|c|}
\hline DESCRIPTION & H P & WORKUP/FINDINGS & TREATMENT \\
\hline \multicolumn{4}{|c|}{PATELLAR TENDINITIS: JUMPER'S KNEE} \\
\hline \multirow[t]{3}{*}{- Seen in jumpers (e.g. basketball volleyball players)} & Hx: Sports, anterior knee pain & XR: AP/lateral: normal & 1. NSAIDs, strengthen quadriceps [no steroid injection-tendon rupture] \\
\hline & PE: Patella: inferior pole tender to palpation & MR: Increased signal in inferior pole & 2. Debride tendon (rare) \\
\hline & \multicolumn{3}{|l|}{PATELLAR TENDON (LIGAMENT) RUPTURE} \\
\hline - Direct trauma (also systemic/metabolic disorders) & \(H x\) : Young, history of trauma & XR: AP/lateral: relative patella alta & Primary surgical repair \\
\hline - Quadriceps patella tendon rupture & PE: Decreased or no active extension, + palpable defect & & \\
\hline \multicolumn{4}{|c|}{QUADRICEPS TENDON RUPTURE} \\
\hline - Result of minor trauma & Hx: Older, cannot actively extend knee & XR: AP/lateral: relative patella baja & Primary surgical repair \\
\hline - Metabolic disorders weaken tendon & PE: Palpable defect or sulcus & & \\
\hline
\end{tabular}

\section*{TUMORS}
\#1 in Adolescents: Osteosarcoma; \#1 in Adults: Chondrosarcoma; \#1 benign (young adult): Giant cell


Terrible Triad
Rupture of tibial collateral and anterior cruciate ligaments plus tear of medial meniscus
DESCRIPTION H P WORK-

\section*{TREATMENT}

\section*{ANTERIOR CRUCIATE (ACL)}
\(\begin{array}{|l|l|l|l|}\hline \text { - Twisting injury, often } \\ \text { no contact }\end{array}\) Hx: "Popping," swelling \(\left.\quad \begin{array}{l}\text { XR: } \\ \text { AP/lateral/sunrise:+/- } \\ \text { capsular avulsion }\end{array}\right)\)
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ MEDIAL COLLATERAL (MCL) } \\
\hline \begin{tabular}{l} 
- Valgus force \\
(football clip)
\end{tabular} & Hx: Medial knee pain & \begin{tabular}{l} 
XR: AP/lateral: \\
possibly an avulsion.
\end{tabular} & \begin{tabular}{l} 
1. Hinged knee \\
brace
\end{tabular} \\
\hline \begin{tabular}{l} 
- Graded 1, \\
(partial), 3 \\
(complete)
\end{tabular} & \begin{tabular}{l} 
PE: Laxity and/or pain with \\
valgus stress (at \(30^{\circ}\) flexion)
\end{tabular} & & \begin{tabular}{l} 
2. Physical therapy: \\
early ROM \\
strengthening
\end{tabular} \\
\hline - LatERAL COLLATERAL (LCL)
\end{tabular}
used when these injuries occur in combination.
POSTEROLATERAL CORNER COMPLEX (PLC)
\begin{tabular}{|c|c|c|c|}
\hline - Often with PCL injury & Hx: Pain, instability & XR: AP/lateral & Early surgical repair \\
\hline - LCL torn & PE: Increased ER at \(30^{\circ}\) flexion, + posterolateral drawer test & & \\
\hline - Popliteofibular ligament torn & & & \\
\hline
\end{tabular}

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.}

Copyright © 2001 Saunders, An Imprint of Elsevier
DISORDERS


1.
- It is preferable that the patient is elderly (needs only one replacement) Failed conservative treatment: activity modification, weight loss, orthosis,
2. physical therapy/strengthening, NSAIDs, ambulation assistance (cane, walker, etc.), injections.

\section*{CONTRAINDICATIONS}
- Young, active patient (will wear out replacement many times)
- Knee extensor mechanism dysfunction
- Medically unstable (e.g. severe cardiopulmonary disease)
- Neuropathic joint
- Any infection

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com


\section*{KEYS TOTOTAL KNEES}

\section*{ALTERNATIVES}
- Considerations: Age, activity level, overall health Osteotomy: for unicompartmental disease, young, active (not in elderly patients) Medial compartment (varus deformity): high tibial osteotomy Lateral compartment (valgus deformity): distal femoral osteotomy
- Arthrodesis/Fusion: totally destroyed, neuropathic, or septic joint
- Unicompartment arthroplasty: for unicompartment disease. Only in selected patients not eligible for osteotomy.

\section*{PROCEDURE}
- Medial parapatellar approach used (lateral parapatellar for severe valgus deformity)
- ACL is sacrificed

Using specialized guides, the distal femur and proximal tibia are removed and replaced with metallic/plastic components.
- Underside of patella also replaced.
- Flexion and extension gap should be equal

\section*{COMPLICATIONS}
- Infection: often leads to removal of prosthesis (Staph \#1)
- Loosening of components
- Patellofemoral joint pain
- Decreased ROM (usually from inadequate postoperative physical therapy)
- Patella fracture
- Superolateral geniculate artery is at risk
- Fat embolism
- Peroneal nerve palsy
- Deep Venous Thrombosis (DVT)/Pulmonary emboli: patients should be anticoagulated (Heparin/warfarin) postoperatively

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Bow Leg and Knock-knee


Two brothers, younger (left) with bowleg, older (right) with knock-knee. In both children, limbs eventually became normally aligned without corrective treatment
DESCRIPTION EVALUATION TREATMENT/COMPLICATIONS
GENU VARUM: BOW LEGS
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
- Normal: neonate to 2 yrs \\
old
\end{tabular} & Hx: Parents observe deformity & \begin{tabular}{l} 
1. Most resolve spontaneously \\
with normal development
\end{tabular} \\
\hline - Etiology: & PE: Measure tibiofemoral angle & 2. Night bracing rarely required \\
\hline 1. Blount's disease & \begin{tabular}{l} 
XR: Only large deformity or if \\
concerned about dysplasia.
\end{tabular} & 3. Osteotomy if persistent (15) \\
\hline 2. Rickets (nutritional) & & \\
\hline 3. Skeletal dysplasia & & \\
\hline 4. Trauma & & \\
\hline
\end{tabular}
4. Trauma

GENU VALGUM: KNOCK KNEES
- Normal for 2 yrs to 4 yrs
- Adult: \(5-10^{\circ}\) valgus is normal
- Etiology:
1. Rickets (renal)
2. Skeletal dysplasia
3. Trauma

Hx: Parents observe deformity PE: Measure tibiofemoral angle

XR: Only large deformity or if concerned about dysplasia.
1. Most resolve spontaneously with normal development
2. Surgery if persists past age 10
- Osteochondritis/traction apophysitis of tibial tubercle (at \(2^{\circ}\) ossification center)

OSGOOD SCHLATTER DISEASE
Hx: Early adolescent. Knee pain worse after activity
1. Activity restriction/modification
- From repetitive extensor (quadriceps) pull on tubercle

XR: Knee AP/lateral: may show heterotopic ossification

TIBIAL TORSION
- Congenital \(\mathbb{R}\) of tibia
(associated with intrauterine Hx : 1-2 yo, often tripping, no pain position)

Often bilateral
PE: Negative foot to thigh angle (normal 10-30 \({ }^{\circ}\) ), with

PE: Pain, swelling at tubercle
2. Most resolve with fusion of apepnysis in midadolesence

Will resolve spontaneously (between 24-48 months) knee/patella pointed forward, intoeing gait observed

Osgood-Schlatter Lesion


Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

\section*{SURGICALAPPROACHES}

\section*{Anteromedial Approach to Knee Joint}


\section*{KNEE: MEDIAL PARAPATELLARAPPROACH}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
1. Ligament \\
reconstruction
\end{tabular} & \begin{tabular}{l} 
No planes: Capsule is \\
under skin
\end{tabular} & \begin{tabular}{l} 
1. Infrapatellar \\
branch of \\
Saphenous Nerve
\end{tabular} & \begin{tabular}{l} 
1. Most commonly used \\
approach
\end{tabular} \\
\hline \begin{tabular}{l} 
2. Total knee \\
arthoplasty
\end{tabular} & & & 2. Most/best exposure
\end{tabular}

LEG/TIBIA: POSTEROLATERALAPPROACH (Harmon)
\begin{tabular}{l|l|l|l|} 
1. Fractures & \begin{tabular}{l} 
1. \\
Gastrocnemius/soleus/FHL \\
[Tibial]
\end{tabular} & \begin{tabular}{l} 
1. Lesser saphenous \\
vein
\end{tabular} & \begin{tabular}{l} 
1. A technically difficult \\
approach
\end{tabular} \\
\hline 2. Nonunions & \begin{tabular}{l} 
2. Peroneus longus/brevis \\
[Superficial peroneal]
\end{tabular} & \begin{tabular}{l} 
2. Posterior tibial \\
artery
\end{tabular} & 2. Bone grafting of nonunion \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{1. Anteromedial} & Just above joint line, & Anterior horn of medial menicus & Used to view lateral compartment \\
\hline & 1 cm inferior to patella & & \\
\hline & 1 cm medial to patellar ligament & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
2. \\
Anterolateral
\end{tabular}} & Just above joint line, & Anterior horn of lateral meniscus & 1. Used to view medial compartment, ACL, and menisci \\
\hline & 1 cm inferior to patella & & \\
\hline & 1 cm lateral to patellar ligament & & 2. PCL posterior structures hard to see \\
\hline 3. Cunorolataral & 2.5 cm above joint line, Intaral to nuindrimantand & & Used to view patellofemoral articulation, patella tracking, \\
\hline
\end{tabular}


Portals for Arthroscopy of Knee


Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

\section*{CHAPTER 9 - FOOT/ANKLE}
- TOPOGRAPHIC ANATOMY
- OSTEOLOGY
- TRAUMA
- ANKLE JOINTS
- FOOT JOINTS
- OTHER STRUCTURES
- MINOR PROCEDURES
- HISTORY OF THE FOOT/ANKLE
- PHYSICAL EXAM
- MUSCLES: DORSUM
- MUSCLES: FIRST PLANTAR LAYER
- MUSCLES: SECOND PLANTAR LAYER
- MUSCLES: THIRD PLANTAR LAYER
- MUSCLES: FOURTH PLANTAR LAYER
- NERVES
- ARTERIES
- DISORDERS
- PEDIATRIC DISORDERS
- SURGICAL APPROACHES TO THE ANKLE

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

\section*{CHAPTER 9 - FOOT/ANKLE}

TOPOGRAPHIC ANATOMY


Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier
OSTEOLOGY


TALUS
- Head (anteriornavicular)
Neck:
- susceptible to fracture

Body/trochlea:
- in ankle mortise

Primary: 7 mo .
13Body
(fetal) 15
years
- Lateral
process
Posterior
- process:
- medial lateral tubercles

Talus is only tarsal bone to articulate
- with tibia and fibula. No muscular attachments.
AVN a concern due to retrograde blood
- supply from branches of posterior tibial dorsalis pedis arteries
- Weight from tibia is transmitted through the trochlea
- FHL runs between medial lateral tubercle of posterior process
- Unfused lateral tubercle: Os trigonum, not a fracture

\begin{tabular}{|c|c|c|c|c|}
\hline CHARACTERISTICS & \multicolumn{2}{|l|}{OSSIFY} & FUSE & COMMENT \\
\hline \multicolumn{5}{|c|}{CALCANEUS} \\
\hline \begin{tabular}{l}
- Multiple facets: posterior largest \\
Sustentaculum tali: has the \\
- middle facet; supports talar neck
\end{tabular} & \begin{tabular}{l}
Primary: \\
Body \\
Secondary: \\
Tubercle
\end{tabular} & \begin{tabular}{l}
6 mo. \\
(fetal) \\
9 \\
year
\end{tabular} & 1315 years & \begin{tabular}{l}
Largest tarsal bone; posterior support for longitudinal arch \\
FHL runs under sustentaculum tali; spring ligament attaches to it \\
Painful spurs can \\
- develop on tuberosity
\end{tabular} \\
\hline \multicolumn{5}{|c|}{NAVICULAR} \\
\hline \begin{tabular}{l}
- "Boat-shaped" \\
- Tuberosity (medial)
\end{tabular} & Primary: & 4 years & 1315 years & \begin{tabular}{l}
Tibialis posterior \\
- inserts on to the tuberosity \\
Articulates with \\
- talus, cuneiforms, cuboid \\
Shape of tarsals \\
- create transverse arch
\end{tabular} \\
\hline \multicolumn{5}{|c|}{CUNEIFORMS} \\
\hline \begin{tabular}{l}
- Three bones \\
- Medial: largest \\
Intermediate: \\
- shorter than others \\
- Lateral
\end{tabular} & Primary: & \begin{tabular}{l}
3 \\
years \\
4 \\
years \\
1 \\
year
\end{tabular} & 1315 years & \begin{tabular}{l}
2nd MT is in "recess" of short intermediate bone; \\
- can lead to fracture of it's base, unstable TMT joint. \\
Peroneus longus \\
- partially inserts on plantar aspect of med. cuneiform
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline CHARACTERISTICS & OSSIFY & & FUSE & COMMENT \\
\hline \multicolumn{5}{|c|}{CUBOID} \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
- Tuberosity inferiorly Cuboid \\
- groove inferiorly
\end{tabular}} & \multirow[b]{2}{*}{Primary:} & \multirow[b]{2}{*}{Birth} & \multirow[b]{2}{*}{13-15 yrs} & \begin{tabular}{l}
Most \\
lateral \\
tarsal \\
bone
\end{tabular} \\
\hline & & & & \begin{tabular}{l}
Peroneus longus tendon \\
- passes through groove on inferior surface
\end{tabular} \\
\hline \multicolumn{5}{|c|}{METATARSALS} \\
\hline \multirow{5}{*}{\begin{tabular}{l}
- Long bone characteristics \\
Base of 2nd \\
- MT in tarsal "recess" \\
Anterior support of \\
- longitudinal arch of the foot
\end{tabular}} & \multirow{5}{*}{\begin{tabular}{l}
Primary: \\
Shaft \\
Secondary: \\
Epiphysis
\end{tabular}} & & \multirow{5}{*}{\[
\begin{aligned}
& \text { Birth } \\
& 14- \\
& 18 \\
& \text { years }
\end{aligned}
\]} & Numbered medial to lateral: Ito V. \\
\hline & & & & Only one epiphysis per bone: \\
\hline & & \begin{tabular}{l}
9 \\
wks \\
(fetal)
\end{tabular} & & \begin{tabular}{l}
in the \\
- head except for
\end{tabular} \\
\hline & & \[
\begin{aligned}
& 5-8 \\
& \text { yrs }
\end{aligned}
\] & & the 1st MT [in the base] \\
\hline & & & & \begin{tabular}{l}
Peroneus brevis inserts on \\
- base of 5th MT (avulsion can occur)
\end{tabular} \\
\hline \multicolumn{5}{|c|}{PHALANGES} \\
\hline & & & & 14 total phalanges in each foot \\
\hline \begin{tabular}{l}
Great toe has \\
- only two phalanges
\end{tabular} & Primary: Body & \begin{tabular}{l}
10 \\
wks \\
(fetal)
\end{tabular} & 14-18 & \begin{tabular}{l}
Only one epiphysis \\
- per bone: in the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Great toe has two sesamoid bones & \begin{tabular}{l}
Secondary: \\
Epiphysis
\end{tabular} & \[
\begin{aligned}
& 2-3 \\
& \text { yrs }
\end{aligned}
\] & years & & \begin{tabular}{l}
base \\
Sesamoid bones with other toes can occur as a normal variant
\end{tabular} \\
\hline
\end{tabular}

Ossification of each tarsal bone occurs from a single center
Borders of ankle mortise: Superior: tibia (plafond), medial: medial malleolus (tibia), lateral: lateral malleolus (fibula)

Tarsal Tunnel: A fibroosseous tunnel formed by the posterior medial malleolus, medial walls of calcaneus and talus, and flexor retinaculum. Contents: Tendons (TP, FDL, FHL), Posterior Tibial artery, Tibial nerve (can be compressed in tunnel)

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

\section*{TRAUMA}


Pronation - external rotation (PER)
Pronation - abduction (PA)


Supination - external rotation (SER)


Supination - adduction (SA)

Lauge-Hansen Classification of Ankle Fractures
DESCRIPTION EVALUATION CLASSIFICATION TREATMENT

\section*{ANKLE FRACTURE}
(see Knee Trauma table for Maisonneuve fracture)

Very
- commonin all ages
Malleoli
- and/or talar dome are involved
- 1 malleolus
fx: stable;
2 malleoli and/or
- ligaments injured: unstable Perfect symmetrical
- mortise reduction required
Also must
- correct
fibular length

Lauge-Hansen-4 types
with subdivided stages
SA:
- supination/adduction stage I, II
SER:
- supination/external rotation: stages I-IV PA:
- pronation/abduction stages I, II, III PER:
- pronation/external rotation: stages I-IV

Dislocation: immediately reduce Stable/nondisplaced: short leg cast 4-6 weeks
Unstable/displaced: ORIF, repair articular surface fibular length, +/- need for syndesmosis screw


Fracture of body of calcaneus with no involvement of subtalar articulation

Extraarticular Fracture of Calcaneus


Intraarticular Fracture of Calcaneus



Fracture of Talar Neck
\begin{tabular}{|c|c|c|c|}
\hline DESCRIPTION & EVALUATION & CLASSIFICATION & TREATMENT \\
\hline \multicolumn{4}{|c|}{TALUS FRACTURE} \\
\hline \begin{tabular}{l}
- MVA, fall from height \\
- Neck most common site, head body rare \\
- Tenuous blood supply adds complications \\
- Semi-emergent injury Hawkins sign (on XR) \\
- resorption of subchondral bone indicates healing (no AVN)
\end{tabular} & \begin{tabular}{l}
HX: Trauma. Cannot bear weight, pain, swelling. \\
PE: Tender to palpation. Check Tibial nerve function, pulses, arch swelling XR: AP/lateral (+/Canale) CT: usually not needed
\end{tabular} & \begin{tabular}{l}
Hawkins types [neck] predicts osteonecrosis: \\
I. Nondisplaced \\
II. Displaced; subtalar subluxation/dislocation \\
III. Displaced; talar body dislocation \\
N. Talar head (+/body) dislocation
\end{tabular} & Type I: Cast 2 months. Manyprefer ORIF to reduce risk ofdisplacement Type III, III, IV: ORIF emergentlyto avoid necrosis +/- bonegraft Early ROM \\
\hline
\end{tabular}

COMPLICATIONS: Osteoarthritis: ankle and subtalar joints; Osteonecrosis of body (incidence decreased with ORIF); Delayed union/nonunion


Homolateral dislocation. All five metatarsals displaced in same direction. Fracture of base of 2nd metatarsal


Divergent dislocation. 1st metatarsal displaced medially, others superolaterally

Isolated dislocation. One or two metatarsals displaced; others in normal position

Injury to Tarsometatarsal (Lisfranc) Joint Complex

DESCRIPTION EVALUATION CLASSIFICATION TREATMENT MIDFOOT FRACTURES
- Involves tarsal bones
- Usually high energy

Midtarsal joint injuries
- result from fractures of adjacent bones.
- Cuneiform cuboid
- fractures are rare

2nd MT in tarsal recess: fracture of its
- base destabilizes TMT joint, dislocation may result.

HX: Trauma. Dorsal pain. PE: Swelling, severe pain atMidtarsal or TMT jointincreases with midfootmotion.
XR: AP/lateral/oblique,+/foot stress filmMed. 2nd MT and middlecuneiform should align
CT/MR: if unsure of fracture

Midtarsal:
Navicular fracture
Avulsion
Tuberosity
Body
Cuboid fracture
Cuneiform fracture
Tarsometatarsal -
LisfrancFracture (2ndMT)
dislocationHomolateral, Isolated,Divergent

Midtarsal:
Nondisplaced:
cast.
Other: ORIF
Navicular:
Reduce, +/-
PCP.
Many require
ORIF
Lisfranc injury: Close reduce fracture and/ordislocation (+/-PCP). ORIF: if displaced orirreduciblemost

COMPLICATIONS: Neurovascular injury: Dorsalis pedis artery; Compartment syndrome; Decreased motion; Post-traumatic osteoarthritis or chronic pain.


\section*{DESCRIPTION}

EVALUATION CLASSIFICATION TREATMENT

\section*{METATARSALAND PHALANGEAL FRACTURES}
- Common injuries: most are benign.
Fracture at metaphyseal/diaphyseal
- junction of 5 th MT (Jones fracture) is not benign
- Base of 5th MT avulsion fracture [PB]: benign
Toe fx: usually stub injury
5th toe most common

HX: Pain with weight bearing, swelling PE: Swelling, ecchymosis, bony pain (increases with motion)
XR: MT:
AP/lateral/oblique Toe: Joint injuries AP only

\section*{Metatarsal: \\ Head neck fractureShaft Base (esp. of 5th)Phalanges: Shaft}

Metatarsal Fractures:Undisplaced: hard soledshoe or walking cast. Displaced/angulated: ORIF5th MT Jones fx: Cast andNWB 6 weeks vs. ORIF
Phalange
Fractures:Great toe:
Reduce. PCP
jointinjuries.
Others: splint or buddy tape

COMPLICATIONS: Neurovascular injury: Dorsalis pedis artery; Osteoarthritis/pain; Decreased motion; Nonunion, especially in 5th Metatarsal (Jones) fracture; Deformity

\section*{ANKLE JOINTS}

\begin{tabular}{|l|l|l|}
\hline & \multicolumn{2}{|c|}{ LIGAMENTS } \\
ATTACHMENTS
\end{tabular} COMMENTS

\section*{LATERAL:}
Anterior talofibular
[ATFL]
Calcaneofibular
[CFL]
Posterior talofibular
[PTFL]

Lateral malleolus to:
\begin{tabular}{|l|l|}
\hline Neck of talus & \begin{tabular}{l} 
Weak, most often spra \\
drawer test when rupt
\end{tabular} \\
\hline Calcaneus & Stabilizes subtalar join \\
\hline \begin{tabular}{l} 
Posterior \\
process (talus)
\end{tabular} & Strong, seldom torn \\
\hline
\end{tabular}


Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.}

Copyright@2001 Saunders, An Imprint of Elsevier
FOOT JOINTS

Capsules and ligaments of metatarsophalangeal and interphalangeal joints: lateral view

\begin{tabular}{|c|c|c|}
\hline JOINT & LIGAMENTS & COMMENTS \\
\hline \multicolumn{3}{|c|}{INTERTARSAL} \\
\hline \multicolumn{3}{|l|}{Subtalar (talocalcaneal) Allows inversion/eversion of foot (e.g. walking on uneven surface)} \\
\hline & Medial talocalcaneal & Medial tubercle to sustentaculum tali \\
\hline & Lateral talocalcaneal & Deep to calcaneofibular ligament \\
\hline & Posterior talocalcaneal & Short; Posterior process to calcaneus \\
\hline & Interosseous talocalcaneal & Strong; in sinus tarsus \\
\hline \multicolumn{3}{|r|}{Also supported by the ligaments of the ankle (see ankle joints)} \\
\hline \multicolumn{3}{|l|}{Transverse/Midtarsal (Chopart's Joint): assists subtalar joint with inversion eversion} \\
\hline \multirow[t]{3}{*}{Talonavicular} & Plantar calcaneonavicular (Spring) & Sustentaculum tali to navicular: plantar support for head of talus; Strong. \\
\hline & Dorsal talonavicular & Dorsal support \\
\hline & Calcaneonavicular (Bifurcate 1) & Lateral support \\
\hline \multirow[t]{4}{*}{Calcaneocuboid} & Calcaneocuboid (Bifurcate 2) & Stabilizes two rows of tarsus \\
\hline & Dorsal calcaneocuboid & Dorsal support \\
\hline & Plantar calcaneocuboid (short plantar) & Strong plantar support \\
\hline & Calcaneocuboid MT (long plantar) & Additional plantar support \\
\hline Cuboideonavicular Cuneonavicular Intercuneiform Cuneocuboid & Each of these four joints have dorsal, plantar, and interosseous ligaments, each bearing the name of the corresponding joint & These joints are small, have little motion or clinical significance. Share a common articular capsule. \\
\hline \multicolumn{3}{|l|}{Plantar ligaments are stronger than the dorsal ligaments} \\
\hline \multicolumn{3}{|c|}{TARSOMETATARSAL (Lisfranc) Gliding type} \\
\hline & Dorsal, plantar, interosseous, tarsalmetatarsals (TMT) ligaments & Medial cuneiform to 2 nd metatarsal: Lisfranc's ligament \\
\hline \multicolumn{3}{|c|}{INTERMETATARSAL} \\
\hline & Dorsal, plantar, interosseous MT & Strengthen transverse arch \\
\hline & Deep transverse metatarsal & Connect the MT heads \\
\hline \multicolumn{3}{|c|}{METATARSOPHALANGEAL Ellipsoid/condyloid type} \\
\hline & Plantar plate and Intersesamoid & Part of weight bearing surface \\
\hline & Collateral & Strong \\
\hline
\end{tabular}

Deep transverse metatarsal ligaments add support to this joint


Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

\section*{OTHER STRUCTURES}

\begin{tabular}{|c|c|c|}
\hline STRUCTURE & FUNCTION & COMMENT \\
\hline Superior extensor retinaculum & Covers tendons, nerves vessels of anterior compartment at the ankle & Distal fibula to medial tibia \\
\hline Inferior extensor retinaculum & Surrounds covers tendons, etc. of the anterior compartment in the foot & " \(Y\) " shaped; calcaneus to medial malleolus and navicular \\
\hline Flexor retinaculum & Covers tendons of posterior compartment & Medial malleolus to calcaneus. Roof of tarsal tunnel. \\
\hline Superior Inferior peroneal retinaculum & Covers tendons sheaths of the lateral compartment at the hindfoot & Superior: Lateral malleolus to calcaneus Inferior: Inferior extensor retinaculum to calcaneus \\
\hline Plantar Aponeurosis (Plantar fascia) & Supports longitudinal arch & Inflammed: plantar fascitis. Can develop nodules \\
\hline \multicolumn{3}{|l|}{Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com} \\
\hline
\end{tabular}

MINOR PROCEDURES

\section*{STEPS}

\section*{ANKLE ARTHROCENTESIS}
1. Ask patient about allergies
2. Plantarflex foot, palpate medial malleolus and sulcus between it and the tibialis anterior tendon. Use the visible
EHL tendon if TA is not palpable.
3. Prepare skin over ankle joint (iodine/antiseptic soap)
4. Anesthetize skin locally (quarter size spot)
5. Insert 20 gauge needle perpendicularly into the sulcus/ankle joint (medial to the tendon, inferior to distal tibia articular surface, lateral to medial malleolus).
Aspirate fluid. If suspicious for infection, send fluid for Gram Stain and culture. The fluid should flow easily if needle is in joint.
6. Dress injection site

DIGITAL BLOCK
1. Same as in hand. See Hand chapter.

\section*{Great toe digital block}


Needle positioned down both sides of base of toe and across top



\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.}

Copyright © 2001 Saunders, An Imprint of Elsevier
HISTORY OF THE FOOT/ANKLE
\begin{tabular}{|c|c|c|}
\hline QUESTION & ANSWER & CLINICAL APPLICATION \\
\hline \multirow[t]{2}{*}{1. AGE} & Young & Sprain, fractures \\
\hline & Middle age, elderly & Overuse injuries, arthritis, gout \\
\hline \multicolumn{3}{|l|}{2. PAIN} \\
\hline \multirow[t]{2}{*}{a. Onset} & Acute (less common) & Fracture, stress fracture \\
\hline & Chronic & Most foot ankle disorders are chronic \\
\hline \multirow[t]{5}{*}{b. Location} & Ankle & Fracture, osteoarthritis, instability, posterior tibial tendinitis \\
\hline & Hindfoot & Plantar fascitis, fracture, retrocalcaneal bursitis, Achilles tendinitis \\
\hline & Midfoot & Osteoarthritis of tarsal joints, fracture \\
\hline & Forefoot & Hallux rigidus, fractures, metatarsalgia, Morton's neuroma, bunions, gout \\
\hline & Bilateral & Consider systemic illness, RA \\
\hline \multirow[t]{2}{*}{c. Occurrence} & Morning pain & Plantar fascitis (improves with stretching/walking) \\
\hline & With activity & Overuse type injuries \\
\hline \multirow[t]{2}{*}{3. STIFFNESS} & Without locking & Ankle sprain, RA \\
\hline & With locking & Loose body \\
\hline 4. SWELLING & Yes & Fracture, arthritis \\
\hline \multirow[t]{3}{*}{5. TRAUMA} & Mechanism/foot position & Inversion: ATFL injury/sprain \\
\hline & Bear weight? & Yes: less severe injury; \\
\hline & & No: more severe (rule out fracture) \\
\hline \multirow[t]{2}{*}{6. ACTIVITY/OCCUPATION} & Sports, repetitive motion & Achilles tendinitis, overuse injuries \\
\hline & Standing all day & Overuse injuries \\
\hline 7. SHOE TYPE & Tight/narrow toe box & Hallux valgus (bunion, overwhelmingly seen in women) \\
\hline 8. NEUROLOGIC SYMPTOMS & Pain, numbness, tingling & Tarsal tunnel syndrome \\
\hline 9. HISTORY OF SYSTEMIC DISEASE & Manifestations in foot & Diabetes mellitus, gout, peripheral vascular disease, RA, Reiter's syndrome \\
\hline \multicolumn{3}{|l|}{Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com} \\
\hline
\end{tabular}


Adranced bunion. Wide (splayed) forefoot with inflamed prominence over ist metatarsal head Great soe deviated lateraly chathux
volgual. overlaps 2 nd toe and is internaly volsus, overlaps 2 nd toe and is internaly
roxued. Other toes also devised lateraly in
conformity with great toe. Lateraly displaced conformity with great toe Lateeraly displaced
extensor hallucis longus tendon is 2 pparent

\begin{tabular}{|l|l|l|}
\hline EXAM & \multicolumn{2}{|c|}{ TECHNIQUE }
\end{tabular}



Subtalar: inversion/eversion Stabilize tibia Normal: Invert 5-10 \({ }^{\circ}\), Evert \(5^{\circ}\)
\begin{tabular}{l|l|l|}
\hline \begin{tabular}{l} 
Midtarsal: \\
adduction/ \\
abduction
\end{tabular} & \begin{tabular}{l} 
Stabilize \\
heel/hindfoot
\end{tabular} & Normal: Adduct \(20^{\circ}\), abduct \(10^{\circ}\) \\
\hline Great toe: & & \\
\hline MTP: flex/extend & Stabilize foot & \begin{tabular}{l} 
Normal: Flex \(75^{\circ}\), extend \(75^{\circ}\). Decreased in \\
hallux rigidus
\end{tabular} \\
\hline IP: flex/extend & Stabilize foot & Normal: Flex 90, extend \(0^{\circ}\)
\end{tabular}

Pronation: dorsiflexion, eversion, abduction. Supination: plantarflexion, inversion, adduction
\begin{tabular}{|l|l|l|}
\hline EXAM & \multicolumn{2}{|c|}{ TECHNIQUE }
\end{tabular}
\begin{tabular}{|l|l|l|} 
Squeeze & \begin{tabular}{l} 
Compress distal \\
tibia/fibula
\end{tabular} & \begin{tabular}{l} 
Pain indicates a syndesmosis \\
injury
\end{tabular} \\
Heel lift & \begin{tabular}{l} 
Standing, raise onto \\
toes
\end{tabular} & \begin{tabular}{l} 
Heel into varus is normal. \\
Decreased lift with posterior \\
compartment pathology
\end{tabular} \\
\hline \begin{tabular}{l} 
Tinel's sign at \\
the Ankle
\end{tabular} & \begin{tabular}{l} 
Tap nerve posterior \\
to medial malleolus
\end{tabular} & \begin{tabular}{l} 
Tingling/parathesia is positive for \\
posterior tibial nerve entrapment
\end{tabular} \\
\hline Compression & \begin{tabular}{l} 
Squeeze foot at MT \\
heads
\end{tabular} & \begin{tabular}{l} 
Pain, numbness, tingling: \\
interdigital neuroma (Morton's)
\end{tabular} \\
\hline Thompson & \begin{tabular}{l} 
Prone: feet hang, \\
squeeze calf
\end{tabular} & \begin{tabular}{l} 
Absent plantar flexion indicates \\
Achilles tendon rupture
\end{tabular} \\
\hline Homans' sign & \begin{tabular}{l} 
Knee extended: \\
passively dorsiflex \\
foot
\end{tabular} & \begin{tabular}{l} 
Pain in calf suggestive of deep \\
venous thrombophlebitis (DVT)
\end{tabular} \\
\hline
\end{tabular}

Copyright © 2008 Elsevier Inc. All rights reserved. www.mdconsult.com

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier
MUSCLES: DORSUM

\begin{tabular}{|l|l|l|l|l|l|}
\hline MUSCLE & ORIGIN & \multicolumn{1}{|c|}{ INSERTION } & NERVE & ACTION & COMMENT \\
\hline \begin{tabular}{l} 
Extensor hallucis \\
brevis [EHB]
\end{tabular} & \begin{tabular}{l} 
Dorsal \\
calcaneus
\end{tabular} & \begin{tabular}{l} 
Base of proximal \\
phalanx of Great toe
\end{tabular} & \begin{tabular}{l} 
Deep \\
peroneal
\end{tabular} & \begin{tabular}{l} 
Extends \\
great \\
toe
\end{tabular} & \begin{tabular}{l} 
Assists EHL with \\
its action
\end{tabular} \\
\hline \begin{tabular}{l} 
Extensor \\
digitorum brevis \\
[EDB]
\end{tabular} & \begin{tabular}{l} 
Dorsal \\
calcaneus
\end{tabular} & \begin{tabular}{l} 
Base of proximal \\
phalanx: 4 lateral \\
toes
\end{tabular} & \begin{tabular}{l} 
Deep \\
peroneal
\end{tabular} & \begin{tabular}{l} 
Extends \\
toes
\end{tabular} & \begin{tabular}{l} 
Injury can result in \\
dorsal hematoma
\end{tabular} \\
\hline
\end{tabular}


Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed}

Copyright © 2001 Saunders, An Imprint of Elsevier
MUSCLES: FIRST PLANTAR LAYER

\begin{tabular}{|l|l|l|l|l|l|}
\hline MUSCLE & \multicolumn{1}{|c|}{ ORIGIN } & \multicolumn{2}{c|}{ INSERTION }
\end{tabular} NERVE ACTION COMMENT

\section*{MUSCLES: SECOND PLANTAR LAYER}

\begin{tabular}{|c|c|c|c|c|c|}
\hline MUSCLE & ORIGIN & INSERTION & NERVE & ACTION & COMMENT \\
\hline \multicolumn{6}{|c|}{SECOND LAYER} \\
\hline Quadratus plantae & Medial and lateral plantar calcaneus & Lateral FDL tendon & Lateral plantar & Assists FDL with toe flexion & Two heads/bellies join on FDL tendon \\
\hline Lumbricals & Separate FDL tendons & Proximal phalanges, extensor expansion & 1. Medial plantar 2-4. Lateral plantar & Flex MTP joint, extend IP joint & 1st lumbrical attaches to 1 FDL tendon \\
\hline
\end{tabular}

Tendons of FHL and FDL also pass through in the second layer
Medial and lateral plantar nerves are terminal branches of the Tibial nerve: they run in the 2nd layer.


MUSCLES: THIRD PLANTAR LAYER

\begin{tabular}{|l|l|l|l|l|l|}
\hline MUSCLE & \multicolumn{5}{|c|}{ ORIGIN }
\end{tabular}

\section*{MUSCLES: FOURTH PLANTAR LAYER}

\begin{tabular}{|c|c|c|c|c|c|}
\hline MUSCLE & ORIGIN & INSERTION & NERVE & ACTION & COMMENT \\
\hline \multicolumn{6}{|c|}{FOURTH LAYER} \\
\hline Plantar interossei (3) & Med. 3, 4, 5th MTs & Medial proximal phalanges: toes 3-5 & Lateral plantar & \begin{tabular}{l}
Adduct toes \\
(PAD)
\end{tabular} & Attachment to MT is medial for all 3 \\
\hline Dorsal interossei (4) & Adjacent MT shafts & Proximal phalanges toes 2-5 & Lateral plantar & \begin{tabular}{l}
Abduct toes \\
(DAB)
\end{tabular} & Larger than the plantar interossei muscles \\
\hline
\end{tabular}

Peroneus longus and Tibialis posterior tendons pass through the fourth layer
Medial and lateral plantar nerves are terminal branches of the Tibial nerve.
PAD \(=5\) Plantar ADduct, DAB 5 = Dorsal ABduct; the second digit is used as the reference point for abduction/adduction in the foot


\section*{LUMBAR PLEXUS \\ POSTERIOR DIVISION}
1. Femoral (L2-4): Saphenous nerve branches in proximal thigh, descends in superficial medial leg, then anterior to medial malleolus in foot.

Sensory: Medial foot: via medial cutaneous nerve (Saphenous nerve)
Motor: NONE (in foot or ankle)
SACRAL PLEXUS

\section*{ANTERIOR DIVISION}
2. Tibial (L4-S3): behind medial malleolus, splits on plantar surface

Sensory: Medial heel: via Medial calcaneal Medial plantar foot: via Medial plantar Lateral plantar foot: via Lateral plantar

Motor: FIRST PLANTAR LAYER of FOOT
Abductor hallucis: Medial plantar
Flexor digitorum brevis[FDB]: Medial plantar
Abductor digiti minimi: Lateral plantar
SECOND PLANTAR LAYER of FOOT
Quadratus plantae: Lateral plantar
Lumbricals: Medial Lateral plantar
THIRD PLANTAR LAYER of FOOT
Flexor hallucis brevis [FHB]: Medial plantar
Adductor hallucis: Lateral plantar
Flexor digiti minini brevis [FDMB]: Lateral plantar
FOURTH PLANTAR LAYER of FOOT
Dorsal interosseous: Lateral plantar
Plantar interosseous: Lateral plantar
POSTERIOR DIVISION
3. Common peroneal (L4-S2): Superficial peroneal divides into intermediate and medial dorsal cutaneous branches in leg. Deep peroneal divides under extensor retinaculum into medial lateral branches.

Sensory: Lateral foot: via Sural (lateral calcaneal dorsal cutaneous).
Dorsal foot: Superficial peroneal.
Dorsal (med.) (Med. dorsal cutaneous branch).



Blood supply of talus. Because of profuse intraosseous anastomoses, avascular necrosis commonly occurs only when surrounding soft tissue is damaged, as in types II and III fractures of talar neck
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{ARTERY} & \multicolumn{2}{|l|}{STEM ARTERY/ COMMENT} \\
\hline \multicolumn{2}{|l|}{Artery to the Tarsal Sinus} & \multicolumn{2}{|l|}{Dorsalis pedis and Peroneal arteries} \\
\hline \multicolumn{2}{|l|}{Artery to the Tarsal Canal} & \multicolumn{2}{|l|}{Posterior tibial artery} \\
\hline \multicolumn{2}{|l|}{Deltoid artery} & \multicolumn{2}{|l|}{Posterior tibial artery; supplies medial body} \\
\hline \multicolumn{2}{|l|}{Capsular ligamentous vessels} & \multicolumn{2}{|l|}{Multiple sources} \\
\hline \multicolumn{2}{|l|}{Interosseous anastomosis} & \multicolumn{2}{|l|}{Extensive, protects against AVN} \\
\hline ARTERY & & COURSE & COMMENT \\
\hline & & (See Leg/Knee chapter for stem art & ries) \\
\hline Anterior Medial Malleolar & Unde malle & er TA EHL tendons to medial leolus & From Anterior tibial artery, supplies medial malleolus \\
\hline Anterior Lateral Malleolar & Unde & er EDL tendon to lateral malleolus & From Anterior tibial artery, supplies lateral malleolus \\
\hline Posterior Medial Malleolar & Unde FHL, & er tendons of TP and FDL, not to medial malleolus & From Posterior tibial artery, supplies medial malleolus \\
\hline Posterior Lateral Malleolar & Unde tendo & er Peroneus longus/brevis dons to lateral malleolus & From Peroneal artery, supplies lateral malleolus \\
\hline Perforating and communicating branches & Anas malle & stomosis with anterior lateral eolar and posterior tibial arteries & From Peroneal artery, contributes supply to lateral malleolus \\
\hline
\end{tabular}



\section*{Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.}

\section*{DISORDERS}
\begin{tabular}{|c|c|c|c|}
\hline DESCRIPTION & HISTORYIPHYSICAL EXAM & WORK-UP/FINDINGS & TREATMENT \\
\hline \multicolumn{4}{|c|}{ACHILLES TENDINITIS} \\
\hline - Occurs at or above insertion of Achilles tendon & Hx/PE: Heel pain, worse with push off. Tender to palpation & XR: Standing lateral: spur at Achilles insertion & \begin{tabular}{l}
1. Rest, NSAID, heel lift \\
2. Excise bone or bursa (rare)
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ACHILLES TENDON RUPTURE} \\
\hline - "Weekend warriors." Middle age men in athletics. & \begin{tabular}{l}
Hx: "hit with bat" sensation PE: Defect, \\
+ Thompson test
\end{tabular} & XR: Standing AP/lateral: usually normal & Casting (in equinus) vs. surgical repair \\
\hline \multicolumn{4}{|c|}{ACQUIRED FLAT FOOT (POSTERIOR TIBIALIS DYSFUNCTION)} \\
\hline \begin{tabular}{l}
- Tibialis posterior tendon dysfunction: tears or degeneration \\
- No arch support results in valgus foot
\end{tabular} & Hx: Pain and swelling PE: + "too many toes" sign, no heel varus on toe rise & XR: Standing AP/lateral: middle foot sag & \begin{tabular}{l}
1. Orthosis \\
2. Activity modification \\
3. Calcaneal osteotomy and FDC transfer \\
4. Arthrodesis
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ANKLE INSTABILITY} \\
\hline \begin{tabular}{l}
- Multiple/recurrent sprains \\
- Also neurologic etiology decreased proprioception
\end{tabular} & Hx: Inversion instability esp. on uneven groundPE: + anterior drawer talar tilt test & XR: AP/lateral/stress view: gapping laterally & 1. PT: strengthen peroneals 2. Surgical reconstruction if condition persists \\
\hline \multicolumn{4}{|c|}{ANKLE SPRAIN} \\
\hline \begin{tabular}{l}
- \#1 \\
musculoskeletal \\
injury \\
- Lateral 90\% - \\
ATFL alone 60\%, with syndesmosis 5\% \\
- Inversion most common mechanism
\end{tabular} & Hx: "Pop,"pain, swelling, +/- ability to bear weightPE: + Anterior drawer, +/talar tilt test & XR: only if cannot bear weight or + bony point tenderness & \begin{tabular}{l}
1. RICE, NSAIDs \\
2. Immobilize \\
grade III \\
3. PT ROM \\
exercises \\
4. Surgery: \\
athletes or severe injury
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ARTHRITIS: OA/DJD} \\
\hline \begin{tabular}{l}
- Can occur in any joint \\
- Associated with trauma, obesity, overuse activity
\end{tabular} & Hx/PE: Older, pain at affected joint. & XR: Standing AP/lateral: classic OA findings & \begin{tabular}{l}
1. NSAID, activity modifcation, orthosis \\
2. \\
Fusion/arthroplasty (rare)
\end{tabular} \\
\hline \multicolumn{4}{|c|}{CHARCOT JOINT: NEUROPATHIC JOINT} \\
\hline \begin{tabular}{l}
- Neurologic disease results in decreased sensation \\
- Joint destroyed/deformed by fx undetected by patient
\end{tabular} & Hx/PE: Patient is insensate-no pain. Red, warm, swollen joint & XR: Standing AP/lateral: fractures (callus or unhealed), joint destroyed & \begin{tabular}{l}
1. Immobilze (skin checks) \\
2. Bony excision or fusion
\end{tabular} \\
\hline \multicolumn{4}{|c|}{CLAW TOE} \\
\hline \begin{tabular}{l}
- Deformity: MTP extended, PIP flexed. Usually all toes \\
- Etiology: \\
Neurologic disease
\end{tabular} & Hx: Toe painPE: Toe deformity, +/- callus corn, neurologic exam & XR: Standing AP/lateralMR/EMG/lab: to rule out neurologic disease & 1. Shoes with extra deep toe box 2. Surgical reconstruction: based on \\
\hline
\end{tabular}
\begin{tabular}{|l} 
(e.g. Chärcot-Marie- \\
Tooth)
\end{tabular} deformity
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{CORN} \\
\hline \begin{tabular}{l}
- Two types: 1. Hard 2.Soft \\
1. Hyperkeratosis: pressure on bones (5th toe \#1) \\
2. Interdigital maceration
\end{tabular} & Hx/PE: Tight shoes. Pain at lesion site. & XR: AP/lateral: look for bone spurs & \begin{tabular}{l}
1. Wide toe box shoe, pads \\
2. Debride callus \\
3. Excise bony prominence
\end{tabular} \\
\hline \multicolumn{4}{|c|}{DIABETIC FOOT: NEUROPATHIC FOOT} \\
\hline \begin{tabular}{l}
- Neuropathy leads to unperceived injury (ulcer, infection) \\
- Vascular insufficiency leads to decreased healing
\end{tabular} & Hx : Burning tingling, +/- painPE: +/-: skin changes, ulcers, deformity, swelling, warmth & XR: Standing AP/lateral: rule out osteomyelitis or Charcot jointDo Ankle Brachial Index & \begin{tabular}{l}
1. Skin care (prevention) \\
2. Protective shoe \\
3. Treat ulcers, infections \\
4. Amputation if necessary
\end{tabular} \\
\hline \multicolumn{4}{|c|}{GOUT (Podagra)} \\
\hline \begin{tabular}{l}
- Purine metabolism defect \\
- Urate crystals create synovitis \\
- Great toe most common site
\end{tabular} & \begin{tabular}{l}
Hx: Men, acute exquisite pain PE : \\
Red, swollen toe.
\end{tabular} & \begin{tabular}{l}
Labs: \\
1. Elevated uric acid \\
2. Negatively birefringent crystals
\end{tabular} & \begin{tabular}{l}
1. NSAIDs, colchicine \\
2. Rest \\
3. Allopurinol (prevention)
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{l|l|l|l|}
\hline \begin{tabular}{l} 
- DJD of MTP of \\
Great toe
\end{tabular} & \begin{tabular}{l} 
Hx: Middle age. \\
Painful, stiff
\end{tabular} & \begin{tabular}{l} 
XR: Standing
\end{tabular} & \begin{tabular}{l} 
1. NSAID, stiff sole \\
- Often post \\
traumatic
\end{tabular} \\
& \begin{tabular}{l} 
PE: MTP Tender to \\
palpation, decreased \\
ROM
\end{tabular} & \begin{tabular}{l} 
AP/lateral OA \\
findings at 1st \\
MTP
\end{tabular} & \begin{tabular}{l} 
shoe \\
2. Arthroplasty/fusion
\end{tabular} \\
\hline
\end{tabular}

SERONEGATIVE SPONDYLOARTHROPATHY: REITER'S, AS, PSORIASIS
- Multiple manifestations
- Associated with

HLA-B27
- Most common in males

Hx/PE: Young,
forefoot/toe/ heel: red, swollen, tender

TAILOR'S BUNION: BUNIONETTE

Hx/PE: Difficulty fitting AP: 5 th toe shoes, painful lateral 5 th metatarsal prominence

XR: Standing
XR: AP/lateral:
+/- calcification Lab: negative RF, ANA medially deviated, MT head laterally deviated
1. Conservative treatment 2. Rheumatology consult
\begin{tabular}{l|l|}
\hline - Prominent 5th & \\
MT head & \\
Laterally & \\
- Bony & 5 \\
exostosis/bursitis &
\end{tabular}

Copyright © 2008 Elsevier Inc. All rights reserved. www.mdconsult.com

\section*{PEDIATRIC DISORDERS}

\begin{tabular}{|llll|}
\hline & & \\
\hline DESCRIPTION & EVALUATION & TREATMENT/COMPLICATIONS \\
& \multicolumn{1}{|c|}{ METATARSUS ADDUCTUS }
\end{tabular}\(|\)


\section*{DESCRIPTION EVALUATION TREATMENT/COMPLICATIONS}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
- Normal in infants (up to 6 yo) \\
- No longitudinal arch \\
- Ankle everted (valgus) \\
- Classified: \\
1. Rigid (tarsal coalition/vertical talus) \\
2. Flexible (variant of normal)
\end{tabular} & \begin{tabular}{l}
Hx: Usually adolescent, \(1 / 2\) foot pain \\
PE: Rigid: always flat \\
Flexible: only flat when WB XR: AP/lateral: may see coalition/or vertical talus in rigid foot
\end{tabular} & \begin{tabular}{l}
Flexible: \\
1. Asymptomatic: no treatment \\
2. Symptomatic: arch supports, stretching \\
Rigid: Treat underlying condition (see tarsal coalition)
\end{tabular} \\
\hline \multicolumn{3}{|c|}{PES CAVUS: HIGH ARCH FOOT} \\
\hline \begin{tabular}{l}
- High arch due to muscle imbalance in immature foot (T. A. and peroneus longus) \\
- Ankle flexed: causes pain \\
- Must rule out neuromuscular disease (e.g. Charcot-MarieTooth)
\end{tabular} & \begin{tabular}{l}
Hx: 8-10 yrs, ankle pain \\
PE: Toe walking, tight heel cord decreased ankle dorsiflexion XR: AP/lateral foot and ankle EMG/NCS: test for weakness MR: spine: r/o neuromuscular disease
\end{tabular} & \begin{tabular}{l}
1. Braces/inserts/AFO as needed (used with mixed results) \\
2. Various osteotomies \\
3. Tendon transfer balance
\end{tabular} \\
\hline \multicolumn{3}{|c|}{TARSAL COALITION} \\
\hline \begin{tabular}{l}
- Connection (fibrous, cartilage then bony) of two tarsals - \#1 Calcaneus/navicular (13-16yo) \\
- \#2 Talus/calcaneus (913yo)
\end{tabular} & \begin{tabular}{l}
Hx : Foot pain during adolescence \\
PE: Stiff, decreased ROM (subtalar), flatfoot (peroneal spasm) XR: \\
AP/lateral/oblique: coalitions can be
\end{tabular} & \begin{tabular}{l}
1. Mild: observe \\
2. Casting \\
3. Coalition resection \\
4. Triple arthrodesis
\end{tabular} \\
\hline
\end{tabular}

\section*{SURGICALAPPROACHES TO THE ANKLE}



CHAPTER 10 - BASIC SCIENCE
- BONES
- NERVES
- MUSCLES (SKELETAL)
- MICROBIOLOGY
- IMAGING

\title{
Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
}

Copyright@2001 Saunders, An Imprint of Elsevier
CHAPTER 10 - BASIC SCIENCE


\section*{STRUCTURE}

COMMENT
Attachment of muscles
Bone function Protection of organs
Reservoir of minerals for body
Hematopoiesis site

\section*{Bone Forms}

Long bones
Form by enchondral ossification, except clavicle Have a physis at each end (except in hand foot) 4 parts: epiphysis, physis, metaphysis, diaphysis Length is derived from the growing physis
Flat bones Form by intramembranous ossification, (e.g., pelvis)
Physeal
Anatomy

Reserve zone Matrix production and storage
Proliferative zone

Hypertrophic zone

Cell proliferation, matrix production

Broken into 3 zones, calcification of matrix



\section*{STRUCTURE}

COMMENT

\section*{Microscopic}

Bone Types
\begin{tabular}{|l|l|}
\hline Woven & Immature bone; normal in infants, also found in callus tumors \\
\hline \begin{tabular}{l} 
Lamellar
\end{tabular} & Mature bone; well organized, normal both cortical cancellous after age 4 \\
\hline \begin{tabular}{l} 
Structural Bone \\
Types
\end{tabular} & \\
\hline Cortical (compact) & \begin{tabular}{l}
\(80 \%\) of bone, highly organized (osteons), blood supply in haversian canal. \\
Volkmann's canal has vessels connecting osteons.
\end{tabular} \\
\hline \begin{tabular}{l} 
Cancellous \\
(spongy/trabecular)
\end{tabular} & \(20 \%\) of bone, crossed lattice structure, higher bone turnover \\
\hline
\end{tabular}

\section*{Structure of Cancellous Bone}


Four Mechanisms of Bone Regulation


Net increase in bone mass
Net decrease in bone mass

\section*{STRUCTURE}

\section*{Cell Types}

Osteoblasts Make bone (secrete matrix, collagen, GAG, stimulated by PTH)
Osteoclasts Resorb bone (giant cells, mineralized bone found only in Howship's lacunae)
Osteocytes Maintain bone ( \(90 \%\) of cells, inhibited by PTH)


\section*{STRUCTURE}

COMMENT
Bone Composition
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c} 
Organic matrix \\
\((40 \%)\)
\end{tabular} & Produced by osteoblasts-becomes osteocytes when trapped in matrix \\
\hline Collagen (Type I) & \begin{tabular}{l}
\(90 \%\) of matrix, gives strength. Mineralization occurs at gaps at the end of \\
each collagen fiber
\end{tabular} \\
\hline Proteoglycan & Glycosaminoglycans structure (GAGs) \\
\hline \begin{tabular}{c} 
Non-collagen \\
protein
\end{tabular} & Osteonectin is most abundant \\
\hline \begin{tabular}{c} 
Inorganic (60\%) \\
Calcium
\end{tabular} & Mineralized portion \\
\hline Hydroxyapatite & Adds strength to bone, found in the collagen gaps \\
\hline
\end{tabular}

\section*{Types of}

\section*{Ossification}

Enchondral Bone replaces a cartilage template in long bones
Intramembranous Mesenchymal template in flat bones and clavicle



\section*{STRUCTURE} COMMENT
Fracture \(\quad\) Point tenderness and swelling are common findings
Types
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Open vs. \\
closed
\end{tabular} & Break in skin is open. Gustilo classification (grade I, II, III A, B, C) \\
\hline Direction & Transverse, spiral, oblique, comminuted \\
\hline Displacement & Displaced or nondisplaced \\
\hline
\end{tabular}
- Salter-Harris-fracture involving an open physis in adults, growth plate in children.
Other - Greenstick—only one cortex disrupted
- Torus-one cortex impacted, but intact
- Pathologic results-from bone tumor/disease


Stage of hard
Callus formation
of external periosteal.
and medullary soft calus
become mineralized as they are converted to


Stage of bone remodeling
Osteodastic and osteoblastic
actvity converts fiber bone to
lamellar bone with true haversian
systems. Normal bone contours
restored even angulation may be partially or completely corrected. \(\mathrm{PO}_{2}\) returns to normal


\section*{Stages of Bone Healing}

Inflammation Hematopoietic cells, fibroblasts, osteoprogenitor cells
Repair Callus formation (hard or soft), woven bone formation (enchondral)
Remodeling Lamellar bone replaces woven, bone assumes normal shape, and repopulation of the marrow


\section*{STRUCTURE COMMENT}

\section*{Bone Healing Factors}

Minerals Calcium, Phosphate

Normal Calcium and Phosphate Metabolism


Regulation of Calcium and Phosphate Metabolism
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Hormone} & Parathyroid hormone (PTH) (peptide) & \begin{tabular}{l}
\(1,25(\mathrm{OH})_{2} \mathrm{D}\) \\
(steraid)
\end{tabular} & Calcitonin \\
\hline & From chief cells of parathyroid glands & From proximal tubule of kidney & From parafollicular cells of thyroid gland \\
\hline Factors stimulating production & Decreased serum \(\mathrm{Ca}^{*+}\) & \begin{tabular}{l}
Elevated PTH \\
Decreased serum Ca+ \\
Decreased serum \(P_{i}\)
\end{tabular} & Elevated serum Ca \({ }^{++}\) \\
\hline Factors inhibiting production & \begin{tabular}{l}
Elevated serum Ca* \\
Elevated \(1,25(\mathrm{OH})_{2} \mathrm{D}\)
\end{tabular} & Decreased PTH Elevated serum Ca* Elevated serum \(P_{1}\) & Decreased serum Ca \\
\hline  & \begin{tabular}{l}
No direct effect \\
Acts indirectly on bowel by stimulating production of \(1,25(\mathrm{OH})_{2} \mathrm{D}\) in kidney
\end{tabular} & Strongly stimulates intestinal absorption of \(\mathrm{Ca}^{++}\)and \(\mathrm{P}_{\mathrm{i}}\) & ? \\
\hline  & \(25(\mathrm{OH}) \mathrm{D}-\mathrm{la}-\mathrm{OH}_{2 s e}\) in mitochondria of proximal tubular cells to convert
\(25(\mathrm{OH}) \mathrm{D}\) to \(1,25(\mathrm{OH})_{2} \mathrm{D}\) Increases fractional reabsorption of \({ }^{\text {filtered }} \mathrm{Ca}^{+}\) Promotes utinary excretion of \(\mathrm{P}_{\mathrm{i}}\) & ? & ? \\
\hline  & \begin{tabular}{l}
Stimulates osteoclastic resorption of bone \\
Stimulates recruitment of preosteoclasts
\end{tabular} & Strongly stimulates osteoclastic resorption of bone & \begin{tabular}{l}
Inhibits osteoclastic resorption of bone \\
? Role in normal human physiology
\end{tabular} \\
\hline Net effect on calcium and phosphate concentrations in extracellular luid and serum & \begin{tabular}{l}
Increased serum calcium \\
Decreased serum phosphate
\end{tabular} & \begin{tabular}{l}
Increased serum calcium \\
Increased serum phosphate
\end{tabular} & Decreased serum calcium (Iransient) \\
\hline
\end{tabular}

\section*{STRUCTURE}

Main Hormones Parathyroid hormone (PTH), Vitamin D, Calcitonin (see fig.__)

\section*{Other Hormones}
\begin{tabular}{ll} 
Estrogen & Inhibits bone resorption \\
\hline Corticosteroids & Increases bone loss \\
\hline Thyroid hormone & Normal levels promote bone formation, increased levels enhance resorption \\
\hline Growth hormone & Promotes bone formation \\
\hline
\end{tabular}


\section*{STRUCTURE}

COMMENT

\section*{Metabolic Disorders}

Hypercalcemia \(1^{\circ}\)
hyperparathyroidism
\(2^{\circ}\)
hyperparathyroidism
Hypocalcemia
\(1^{\circ}\)
hypoparathyroidism
Renal osteodystrophy Chronic renal failure, "Rugger jersey" spine
Rickets/osteomalacia Decreased/failed mineralization, Vitamin D deficiency
\begin{tabular}{l|l}
\hline Osteoporosis & Decreased bone mass, elderly \\
\hline Scurvy & Vitamin C deficiency results in defective collagen \\
\hline Osteopetrosis & Increased bone density due to reduced osteoclast activity \\
\hline Paget's Disease & \begin{tabular}{l} 
Simultaneous osteoblast osteoclast activity results in dense, but more \\
brittle bones
\end{tabular} \\
\hline
\end{tabular} brittle bones


Grade I. Stretching of ligament with minimal disruption of fibers


Grade II. Tearing of up to \(50 \%\) of ligament fibers; small hematoma. Hemarthrosis may be present


Grade III. Complete tear of ligament and separation of ends, hematoma, and hemarthrosis
\begin{tabular}{|c|c|}
\hline STRUCTURE & COMMENT \\
\hline Cartilage & Several types: \\
\hline Hyaline & Articular surfaces, physeal plates \\
\hline Fibrocartilage & Annulus fibrosis, meniscus, pubic symphysis \\
\hline Elastic & Nose, ears \\
\hline Articular Cartilage & \\
\hline Function & Distribute load over large surface, low friction motion surface \\
\hline Components & Water, collagen type II, proteoglycans, chondrocytes \\
\hline Water content & Decreases with age, increases in osteoarthritis \\
\hline Osteoarthritis & \begin{tabular}{l}
\#1 form of arthritis, articular cartilage defect/damage. Primary, "wear and tear"; or secondary, (e.g., posttraumatic.) Often found in hands and weight-bearing joints, knees \#1 site Classic radiographic findings: \\
1. Osteophytes \\
2. Subchondral cysts \\
3. Subchondral sclerosis \\
4. Joint space narrowing
\end{tabular} \\
\hline \begin{tabular}{l}
Inflammatory \\
Arthritis
\end{tabular} & Rheumatoid, SLE, spondyloarthropathy, gout \\
\hline Rheumatoid Arthritis & Immune disorder targeting the synovium. Chronic synovitis and pannus ormation lead to articular surface and joint destruction. \\
\hline & \begin{tabular}{l}
3: 1 women, associated with HLA-DR4, +RF, increased ESR/CRP Multiple joints affected: MCPs: ulnar deviation, feet: claw toe common Findings: morning stiffness, nodules, radiographs: \\
1. Bone erosions (periarticular) \\
2. Osteopenia \\
3. Swelling
\end{tabular} \\
\hline Reiter's Syndrome & Triad: Urethritis, conjunctivitis, asymmetric arthritis; + HLA-B27 \\
\hline Gout & Mono-sodium urate crystals in the joint induce an inflammatory rxn Old men, great toe \#1 site, elevated uric acid levels often seen Crystals: negatively birefringent \\
\hline Ligaments & Attach one bone to another \\
\hline Ligament bone attachment & \begin{tabular}{l}
1. Ligament to fibrocartilage \\
2. Fibrocartilage to calcified fibrocartilage, (most injuries occur here) \\
3. Calcified fibrocartilage to bone (Sharpey's fibers)
\end{tabular} \\
\hline Sprain & Tear of a ligament. \\
\hline Grade I & Stretching of, or minor tear in, ligament; no laxity \\
\hline Grade II & Incomplete tear, laxity is evident (usually swelling) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Grade III & Complete tear, increased laxity (swelling/hematoma) \\
\hline \begin{tabular}{l} 
Ligament \\
Strength
\end{tabular} & Relative strength difference between ligament and one predict injury \\
\hline Pediatrics & Stronger than physis. Injury will occur at physis first \\
\hline Adult & Bone stronger than ligament. Ligament will rupture first \\
\hline Geriatrics & Ligament stronger than bone. Bone will fracture first \\
\hline
\end{tabular}


Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier

NERVES

\section*{STRUCTURE \\ COMMENT}

\section*{Cellular Anatomy}
\begin{tabular}{|l|l|}
\hline Neuron & Cell body. Dendrites receive signal, axon conveys signal \\
\hline Glial cells & Schwann cells produce myelin to cover the axon \\
\hline Microanatomy & Peripheral nerve has both afferent and efferent fibers \\
\hline \begin{tabular}{l} 
Afferent fibers \\
(axon)
\end{tabular} & \begin{tabular}{l} 
Transmits sensory signals from peripheral nerve endings to the CNS Cell \\
bodies are in the dorsal root ganglion (DRG)
\end{tabular} \\
\hline \begin{tabular}{l} 
Efferent fibers \\
(axon)
\end{tabular} & \begin{tabular}{l} 
Transmits motor signals from CNS via ventral horn/ventral root to peripheral \\
muscles.
\end{tabular} \\
\hline Endoneurium & Surrounds each individual fiber (axon) \\
\hline Fascicles & Group of endoneurium coated fibers \\
\hline Perineurium & Surrounds each fascicle \\
\hline Peripheral nerve & Groups of fascicles, blood vessels, and connective tissue \\
\hline Epineurium & Surrounds the groups of fascicles (nerves) \\
\hline Nerve Injuries & Based on microanatomy \\
\hline Neuropraxia & Conduction disruption, axon intact; resolves in days to weeks \\
\hline Axonotmesis & \begin{tabular}{l} 
Axon disrupted, endoneurium intact allows axon regeneration; recovery is slow, \\
growth 1mm/day, but usually full
\end{tabular} \\
\hline Neurotmesis & \begin{tabular}{l} 
Nerve transection, recovery requires surgical repair
\end{tabular} \\
\hline Poliomyelitis & \begin{tabular}{l} 
Viral destruction of ventral horn (motor) cells resulting in weakness/paralysis, \\
but normal sensation. Vaccine for prevention.
\end{tabular} \\
\hline
\end{tabular}
Nerve
Conductions

Facilitated by myelin coating on axon (larger/coated fibers are faster)
Resting potential Maintained by a polar difference between intra/extracellular environments
Action potential Change in permeability of \(\mathrm{Na}+\) ions depolarizes cell.
\begin{tabular}{ll} 
Nodes of \\
Ranvier & Gaps between Schwann cells that facilitate conduction
\end{tabular}

Stimuli is given and followed by surface electrodes. Latency (delay) and amplitude (strength of signal) are measured.

Conduction velocities, \(50 \mathrm{~m} / \mathrm{s}\) are abnormal
\begin{tabular}{l|l} 
Guillain-Barré & \begin{tabular}{l} 
Ascending motor weakness/paralysis. Caused by demyelination of peripheral \\
nerves following viral illness. Most self-limiting.
\end{tabular} \\
\hline Syndrome & \begin{tabular}{l} 
Autosomal dominant disorder. Demyelinating disorder affecting motorsensory \\
nerves. Onset 5-15yrs, peroneal muscles first, then hand foot intrinsics. Can \\
result in cavus foot, claw toe, intrinsic minus hand.
\end{tabular} \\
\hline \begin{tabular}{l} 
Charcot-Marie
\end{tabular} \\
\hline Tooth &
\end{tabular}
Neuromuscular
junction junction

Axon of motor neuron synapses with the muscle (motor end plate)

Neurotransmitte
Acetylcholine stored in axon crosses synaptic cleft and binds to receptors on sarcoplasmic reticulum and depolarizes
Pharmacologic Nondepolarizing agents (e.g., vecuronium) competively bind Ach receptor
agents
Depolarizing agents (e.g. succinylcholine) bind short term to Ach receptor
Toxins/nerve gas: also bind these receptors competively; treat with anticholinesterase agents (increase Ach levels in cleft)
\begin{tabular}{ll} 
Myasthenia & \begin{tabular}{l} 
Relative shortage of acetylcholine receptors due to competitive binding by \\
thymus derived antibodies. Treat with thymectomy or anti-acetylcholinesterase \\
agents (increase acetylcholine levels in cleft)
\end{tabular} \\
\hline gravis & All the muscles innervated by a single motor neuron \\
\hline
\end{tabular}


\section*{Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com}

\title{
Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
}

Copyright © 2001 Saunders, An Imprint of Elsevier

\section*{MUSCLES (SKELETAL)}
STRUCTURE
\begin{tabular}{ll}
\hline Types of Muscle & Smooth, cardiac, skeletal \\
\hline Skeletal & Voluntary control, have an origin and insertion
\end{tabular}
Anatomy Muscles cells have two types of contractile filaments: actin, myosin
Muscle Comprised of multiple bundles or fascicles; surrounded by epimysium
\begin{tabular}{|l|l|}
\hline Bundle/Fascicle & Comprised of multiple muscle fibers (cells); surrounded by perimysium \\
\hline Fiber (cell) & Comprised of multiple myofibril; surrounded by endomysium \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Myofibril & Comprised of multiple sarcomeres, end to end; no surrounding tissue \\
\hline & Comprised of interdigitated thick and thin filaments; organized into bands.
\end{tabular}
Myosin

Actin
Troponin
Tropomyosin
\begin{tabular}{l} 
Contraction \\
\hline \\
\begin{tabular}{l} 
Electromyography \\
(EMG)
\end{tabular} \\
\hline
\end{tabular} \(Z\) line to \(Z\) line defines the sarcomere A band: length of thick filaments, does not change with contraction I band, H zone, and sarcomere length all shorten with contraction
Thick filament: have "heads" that bind ATP and attach to thin filaments Thin filaments: fixed to \(Z\) bands; associated with troponin and tropomyosin Associated with actin and tropomyosin, binds \(\mathrm{Ca}++\) ions Long molecule, lies in helical groove of actin and blocks myosin binding Initiated when Acetylcholine binds to receptors on sarcoplasmic reticulum and depolarizes them. Depolarization causes a release of \(\mathrm{Ca}++\) which then binds to troponin molecules. This binding causes the tropomyosin to move and the "charged" head (ATP bound) of myosin can bind to actin.
Breakdown of ATP causes contraction of filaments, (shortening of sarcomere), and the release of the myosin from the actin filament.
Intramuscular electrodes used to evaluate muscle function. Increased frequency, decreased duration, decreased amplitude indicate myopathy; opposite findings indicative of neuropathy.

\section*{Types of Contraction}
\begin{tabular}{|l|l|}
\hline Isometric & Muscle fires against increasing resistance, muscle length is constant \\
\hline Isotonic & Resistance is constant through contraction \\
\hline Isokinetic & Muscle contracts at a constant speed \\
\hline Eccentric & Muscle lengthens when it fires; can cause injury \\
\hline Concentric & Muscle shortens when it fires \\
\hline Strength & Related to cross sectional area of muscle \\
\hline \begin{tabular}{l} 
Duchene \\
Muscular \\
Dystrophy
\end{tabular} & \begin{tabular}{l} 
X-linked recessive disorder affecting boys. Progressive, noninflammatory \\
process affecting proximal muscles (increased CPK). Birth and \\
development to age 3-5 usually normal, then weakness, clumsy walking, + \\
Gower's sign (uses hands to rise from floor) and calf pseudohypertrophy. \\
Most wheelchair bound by 15. Multiple associated deformities, contractures, \\
scoliosis, etc.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ STRUCTURE } & \multicolumn{1}{c|}{ COMMENT } \\
\hline Compartments & Muscles are located within confined fibroosseous/fascial spaces \\
\hline \begin{tabular}{l} 
Compartment \\
Syndrome
\end{tabular} & \begin{tabular}{l} 
Multiple causes of increased compartment pressures. Increased pressures \\
and decreased perfusion resulting in myonecrosis.
\end{tabular} \\
\hline & \begin{tabular}{l} 
5 P's: Pain, parathesias, paralysis, pallor, pulselessness (not all needed for \\
diagnosis). Firm tense compartments on exam.
\end{tabular} \\
\hline Fasciotomy within 6 hours needed. Contracture can result.
\end{tabular}\(|\)\begin{tabular}{|l|l|l|}
\hline Junction & Muscle strain is a partial tear of this unit \\
\hline Tendon Anatomy & Attaches muscles to bones \\
\hline Fibril & \begin{tabular}{l} 
Type I collagen grouped into microfibrils, then subfibrils, then fibrils, \\
surrounded by endotenon
\end{tabular} \\
\hline Fascicle & Fibroblasts and fibrils surrounded by peritenon \\
\hline Tendon & \begin{tabular}{l} 
Groups of fascicles surrounded by epitenon
\end{tabular} \\
\hline Vascular Tendon & Vascular paratenon surrounds tendon to supply vascularity; no sheath \\
\hline Avascular Tendon & These tendons are in a sheath, have a vincula to supply vascularity \\
\hline Tendon bone & \begin{tabular}{l} 
1. \\
Junction
\end{tabular} & \begin{tabular}{l} 
2. \\
3. Fibrocartilage to calcified fibrocartilage (Sharpey's fibers)
\end{tabular} \\
\hline
\end{tabular}


\section*{MICROBIOLOGY}


Terminal branches of metaphyseal arteries form
loops at growth plate and enter irregular afferent loops at growth plate and enter irregular atferent predisposing to bacterial seeding. In addition, lining cells have little or no phagocytic activity. Area is
catch basin for bacteria, and abscess may form

Abscess, limited by growth plate, spreads trans versely along Volkmann canals and elevates invade shaft: in infants under 1 year of age, some metaphyseal arterial branches passe, through growth plate, and infection may invade epiphysis and joint


As abscess spreads, segment of devitalized bone (sequestrum) remains within it. Elevated periosteu may also lay down bone to form encasing shell finvolucrum). Ocassionally, abscess walled off by

\section*{INFECTION}

\section*{COMMENT}

Osteomyelitis Bacterial infection of bone or bone marrow. Staph. aureus \#1 organism.
Hematogenous spread most common. Classified as acute, subacute, or chronic.
Pain, swelling, increased WBC, ESR, positive blood cultures. XR shows radiolucencies, +/-sequestrum (dead cortical bone), involucrum (periosteal new bone). Bone scan helps diagnosis. ID abscess/sequestra, IV antibiotics followed by a course of oral antibiotics
Infection of joint space (and synovium). Staph. aureus \#1 organism.
Septic Joint Hematogenous or extension of osteomyelitis common routes. Knee \#1, hip \#2 most common sites. Painful, warm swollen joint.
Requires aspiration/surgical drainage V antibiotics.
Tetanus Neuroparalytic disorder caused from exotoxin from Clostridium tetani
Vaccine prophylaxis: Tetanus and diphtheria toxoid (Td); Tetanus immunoglobulin (TIG)
Previously vaccinated (5yrs), clean wound: no treatment
Previously vaccinated (5yrs), clean or dirty wound: 0.5 mg Td
Unknown vaccination status or "dirty" wound: Td and TIG

Thompson: Netter's Concise Atlas of Orthopaedic Anatomy, 1st ed.
Copyright © 2001 Saunders, An Imprint of Elsevier
IMAGING

\section*{STUDY COMMENT}

X-ray (plain Standard study, multiple views needed, shows bones well, but soft tissues poorly. film) The joint above and below a fracture should always receive plain films.
CT Best study for bony anatomy. Soft tissue seen, but not as well as MRI. Often used for comminuted fractures and preoperative planning.

Best study for soft tissues including intervertebral discs, ligaments, tendons.
MRI Also highly sensitive for osteonecrosis; T1 images weighted for fat (good for normal anatomy), T2 images weighted for water (better for pathology). Also used for preoperative planning
Radioactive isotope injected into blood. Imaging of the whole body allows
Bone scan visualization of areas of increased uptake. Good for identifying tumor, fractures, infections, and heterotopic bone activity (HO).
Arthrography Contrast injected into joint followed by plain films to evaluate capsular integrity (e.g. used for rotator cuff tears)

Myelography Contrast injected into epidural space; evaluates disc herniation, cord tumors
Discography Contrast injected into nucleus pulposus to evaluate disc degeneration. Not a common procedure.
Ultrasound Good for evaluating rotator cuff pathology

Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

\section*{ABBREVIATONS USEDINTHIS BOOK}

A

Abd abduct

AC acromioclavicular

ACL anterior cruciate ligament

ADM abductor digitiminimi

AGRAM arthrogram

AlIS anterior inferior iliac spine

AIN anterior interosseus nerve

ALL anterior longitudinal ligament

AMBRI atraumatic, multidirectional, bilateral instability

ANA antinuclear antibody

Ant. anterior

AP anteroposterior

APB abductor pollicis brevis

APC anterior-posterior compression

APL abductor pollicis longus

ASIS anterior superior iliac spine

AVN avascularnecrosis

B

BR brachioradialis

C

Ca++ ion calcium

CBC
complete blood cell count
\begin{tabular}{|c|c|}
\hline CL & capitate-Iunate joint \\
\hline CMC & carpal-metacarpal \\
\hline CPK & creatine phosphokinase \\
\hline CRP & C-reactive protein \\
\hline C-spine & cervical spine \\
\hline CT & computed tomography \\
\hline CTL & capitotriquetral ligament \\
\hline CTS & carpal tunnel syndrome \\
\hline D & \\
\hline DDD & degenerative disk disease \\
\hline DIO & dorsal interossei \\
\hline DIP & distal interphalangeal \\
\hline DISI & dorsal intercalated segment instability \\
\hline DJD & degenerative joint disease \\
\hline DRC & dorsal radiocarpal ligament \\
\hline DRUJ & distal radioulnar joint \\
\hline DVT & deep vein thrombosis \\
\hline E & \\
\hline ECRB & extensor carpi radialis brevis \\
\hline ECRL & extensor carpi radialis longus \\
\hline ECU & extensor carpi ulnaris \\
\hline EDC & extensor digitorum communis \\
\hline EDL & extensor digitorum longus \\
\hline EDM & extensor digiti minimi \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline EHL & extensor hallucis longus \\
\hline EIP & extensor indicis proprius \\
\hline EMG & electromyogram \\
\hline EPB & extensor pollicis brevis \\
\hline EPL & extensor pollicis longus \\
\hline ER & external rotation \\
\hline ESR & erythrocyte sedimentation rate \\
\hline F & \\
\hline FCR & flexor carpi radialis \\
\hline FCU & flexor carpi ulnaris \\
\hline FDB & flexor digitorum brevis \\
\hline FDL & flexor digitorum longus \\
\hline FDMB & flexor digiti minimi brevis \\
\hline FDP & flexor digitorum profundus \\
\hline FDS & flexor digitorum superficialis \\
\hline FHB & flexor hallucis brevis \\
\hline FHL & flexor hallucis longus \\
\hline FPB & flexor pollicis brevis \\
\hline FPL & flexor pollicis longus \\
\hline Fx & fracture \\
\hline \multicolumn{2}{|l|}{G} \\
\hline GAG & glycosaminoglycans \\
\hline GI & gastrointestinal \\
\hline GU & genitourinary \\
\hline
\end{tabular}
    medial collateral ligament
metacarpophalangeal

Med. medial

MF middle finger

MRI magnetic resonance imaging

MT metatarsal

MVA motor vehicle accident

N
N. nerve

NCS nerve conduction study

NSAID non-steroidal anti-inflammatory drug

0

OA osteoarthritis

OP opponens pollicis muscle

ORIF open reduction, internal fixation

P

PAD palmar adduct

PCL posterior cruciate ligament

PCP percutaneous pinning

PE physical examination

PFCN posterior femoral cutaneous nerve

PFS patellofemoral syndrome

PIN posterior interosseus nerve
proximal interphalangeal
PL palmaris longus
PLC posterolateral comer complex
PLL posterior longitudinal ligament
PLRI posterolateral rotary instability
PMHx past medical history
PMRI posterolateral rotary instability
PO postoperatively
Post. posterior
PQ pronator quadratus
PSIS posterosuperior iliac spine
PT pronatorteres
PTH parathyroid hormone
PVNS pigmented villonodular synovitis
Q
Q quadriceps
R
RA meumatoid arthnitis
RAD radiation absorbed dose
RC rotator cuff
RCL radioscaphocapitate ligament
RF rheumatoid factor, ring finger
RICE rest, ice, compression, and elevation
ROM range of motion
reflex sympathetic dystrophy

RSL radioscapholunate ligament

RTL radiolunotriquetral ligament

S

SC stermoclavicular

SCM stemocleidomastoid

SF small finger

SFA superficial femoral artery

SH shorthead

SI sacroiliac

SL scapholunate

SLAC scapholunate advanced collapse

SLAP superior labrum anterior/posterior

STT scaphotrapezoid-trapezial

Sup. superior

Sx symptom

T

TA tibialis anterior

TCL transverse carpal ligament

Td tetanus and diphtheria toxoid

TFCC triangular fibrocartilage complex

TFL tensor fascia lata

THA total hip arthroplasty

TIG tetanus immunoglobulin
```

TP tibialis posterior
TTP tenderness to palpation

```
TUBS traumatic, unilateral instability, and Bankart lesion
U
UE upper extremity
UMN upper motor neuron
v
VIO volar interosseus
VISI volar intercalated segment instability
VMO vastus medialis obliquus
w
WB weight bearing
WBC white blood cell count
X
XR x-ray```


[^0]:    Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

[^1]:    Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

[^2]:    Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

[^3]:    |34 LINT

[^4]:    Copyright © 2008 Elsevier Inc. All rights reserved. - www.mdconsult.com

